

This research was financially supported by the Netherlands Organisation for Scientific Research
(NWO) under project number 643.100.501, as part of the VIEW (Visual Interactive Effective
Worlds) program.

CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG

van der Laan, W. J.

Multiresolution Volume Processing and Visualization on Graphics Hardware
Wladimir J. van der Laan
Thesis Rijksuniversiteit Groningen. - With ref.
ISBN 978-90-367-4616-8

RIJKSUNIVERSITEIT GRONINGEN

Multiresolution Volume Processing and Visualization on Graphics
Hardware

Proefschrift

ter verkrijging van het doctoraat in de
Wiskunde en Natuurwetenschappen
aan de Rijksuniversiteit Groningen

op gezag van de
Rector Magnificus, dr. F. Zwarts,
in het openbaar te verdedigen op

vrijdag 4 februari 2011
om 16:15 uur

door

Wladimir Jasper van der Laan
geboren op 15 juni 1981

te Groningen

Promotor: Prof. dr. J. B. T. M. Roerdink

Copromotor: Dr. A. C. Jalba

Beoordelingscommissie: Prof. dr. D. Weiskopf
Prof. dr. ir. J. J. van Wijk
Prof. dr. S. Zaroubi

ISBN: 978-90-367-4616-8

Contents

1 Introduction 1
1.1 Coping with the data stream in interactive visualization 1
1.2 Interactive morphological and wavelet-based volume processing and visualization 2
1.3 Level sets . 6
1.4 General purpose computation on graphics hardware 6
1.5 Thesis contributions and organization . 8

2 Multiresolution MIP rendering on graphics hardware 11
2.1 Introduction . 11
2.2 Previous and related work . 12
2.3 Overview of the multiresolution MIP algorithm 13

2.3.1 Morphological operators . 13
2.3.2 Pyramids . 13
2.3.3 Multiresolution MIP algorithm . 14
2.3.4 Streaming MIP . 15

2.4 Implementation on graphics hardware . 16
2.4.1 Per-voxel projection . 16
2.4.2 Representing the detail coefficients . 16
2.4.3 Projecting the detail coefficients . 17
2.4.4 Load balancing . 18
2.4.5 Streaming MIP . 18
2.4.6 Optimized streaming MIP . 19
2.4.7 Post-processing . 19

2.5 Results . 19
2.6 Discussion . 22
2.7 Conclusion . 24

3 Accelerating Wavelet Lifting on Graphics Hardware using CUDA 25
3.1 Introduction . 25
3.2 Previous and related work . 27
3.3 Wavelet lifting . 28

3.3.1 Wavelet transform by subband filtering 28
3.3.2 Wavelet transform by lifting . 29

vi CONTENTS

3.4 Wavelet lifting on GPUs using CUDA . 31
3.4.1 CUDA overview . 31
3.4.2 Performance considerations for parallel CUDA programs (kernels) 33
3.4.3 Parallel wavelet lifting . 36
3.4.4 Separable wavelets . 36
3.4.5 Horizontal pass . 37
3.4.6 Vertical pass . 39
3.4.7 3-D and higher dimensions . 42

3.5 Results . 43
3.5.1 Wavelet filters used for benchmarking 43
3.5.2 Experimental results and comparison to other methods 44
3.5.3 Performance Analysis . 49

3.6 Conclusion . 52

4 Accelerating Wavelet-Based Video Coding on Graphics Hardware 53
4.1 Introduction . 53
4.2 CUDA-based implementation of the DWT . 54

4.2.1 CUDA overview . 54
4.2.2 Wavelet lifting . 55
4.2.3 Wavelet lifting in CUDA . 55

4.3 Accelerating the Dirac Video Codec . 56
4.3.1 Motion compensation . 58
4.3.2 Frame arithmetic . 60

4.4 Performance results . 60
4.5 Conclusion . 61

5 Screen Space Fluid Rendering with Curvature Flow 63
5.1 Introduction . 63
5.2 Related work . 64
5.3 Method . 65

5.3.1 Surface depth . 66
5.3.2 Smoothing methods . 66
5.3.3 Thickness . 68
5.3.4 Noise . 68
5.3.5 Rendering . 69

5.4 Results and discussion . 71
5.5 Conclusions and future work . 72

6 A Memory and Computation Efficient Sparse Level-Set Method 81
6.1 Introduction . 81
6.2 Previous and related work . 82
6.3 Overview of the level set method . 84

6.3.1 Sparse-grid level set representations . 85

CONTENTS vii

6.3.2 Reshaping the level set function . 85
6.4 The proposed method . 86

6.4.1 The data structure . 87
6.4.2 Initialization . 87
6.4.3 Append operation . 88
6.4.4 Sequential access with stencil . 88
6.4.5 Random access . 89
6.4.6 Tile management . 89
6.4.7 Updating the level-set . 93

6.5 Results . 97
6.5.1 Mean curvature flow . 97
6.5.2 Volume-conserving mean curvature flow 97
6.5.3 Memory usage . 100
6.5.4 Periodic velocity field advection . 100
6.5.5 Tile size considerations . 102
6.5.6 Tile management overhead . 102
6.5.7 Discussion of our method . 103
6.5.8 Parallelization over multiple CPUs . 103

6.6 Conclusions and future work . 104

7 Real-Time Sparse Level-Sets on Graphics Hardware 105
7.1 Introduction . 105
7.2 Previous and related work . 106

7.2.1 Efficient level set methods on the CPU 106
7.2.2 Level set GPU methods . 107
7.2.3 Sparse CPU methods . 107
7.2.4 Surface reconstruction . 108

7.3 Proposed GPU level set method . 108
7.3.1 Generic level set equation . 108
7.3.2 CPU STL method . 109
7.3.3 GPU sparse level sets . 110
7.3.4 Rendering the interface using CUDA and OpenGL 117

7.4 Proposed surface reconstruction method . 118
7.4.1 Efficiency and multi-resolution . 119

7.5 Comparison with previous approaches . 120
7.6 Results . 122

7.6.1 Efficiency: Comparison to other methods 122
7.6.2 Surface reconstruction . 123
7.6.3 Interactive level-set surface editing . 127
7.6.4 Limitations . 128

7.7 Conclusions and future work . 129

viii CONTENTS

8 Concluding remarks 131
8.1 Summary and Conclusions . 131
8.2 Future outlook . 132

8.2.1 GPUs . 132
8.2.2 Computer Graphics APIs . 133
8.2.3 CUDA . 133
8.2.4 GPGPU for embedded systems . 134

Bibliography 137

Publications 151

Samenvatting 153

Dankwoord 155

Chapter 1

Introduction

1.1 Coping with the data stream in interactive visualization
Visualization of large data sets requires advanced techniques in image processing, hierarchi-
cal data management, and data reduction. This is the case for facilities covering a wide range,
from classical medical imaging to simulation of natural phenomena. Data volumes generated
by scientific simulations can easily grow into the range of giga-bytes. Medical scanners rou-
tinely generate data volumes with a resolution of 5123 voxels or higher, whereas scanners like
multi-slice CT generate more than 1000 image slices in one scan. In a functional neuroimaging
experiment (PET, fMRI), a large number of data volumes is obtained, thus increasing data size
even further. Both the increasing size and complexity of these data ask for new techniques for in-
teractive visualization. The possibility of interaction during evaluation will significantly reduce
the time required to interpret and present results.

Between data acquisition and display of the final image on the screen, a structured sequence
of steps are executed in the visualization pipeline [?]. Several processing steps can be included
in this pipeline in order to expose relevant data features. In the mapping step, data values are
mapped to graphical attributes such as color and opacity. Advanced multidimensional transfer
functions can be adapted by the user through interactive tools [65]. However, increasingly one
employs extensive volume processing before the mapping step, such as filtering, classification,
segmentation and feature extraction of the raw data.

To arrive at interactivity for large data sets, a number of techniques are available, such as: (i)
auxiliary data structures; (ii) special (multiresolution) data transforms, e.g., Fast Fourier Trans-
form, wavelets or multiscale morphological methods (see below); (iii) extraction of features from
the volume data, and visualizing the features only. Although these techniques all have their merit,
the development of new algorithms remains necessary because data sizes remain growing at a
fast pace, and demands on processing capabilities are especially high in exploratory visualiza-
tion, where the user wants to adjust application parameters and resource allocation in an on-line
fashion. In such interactive data visualization, the speed of the data processing stage (data filter-
ing, feature extraction, segmentation, etc.) should be comparable to that of the visualization step.
Otherwise, the computational burden will render the overall technique ineffective and far from
interactive. Therefore, the efficiency of the data-processing method represents another important
issue which should be addressed.

2 1.2 Interactive morphological and wavelet-based volume processing and visualization

A recent development which is having a major impact on interactive data processing and
visualization, is new programmable graphics hardware. Through the use of faster memory ac-
cess rates, intrinsic data parallelism and high arithmetic intensity, modern yet affordable high-
performance graphics processors (GPUs) are already capable of outperforming current CPUs in
certain computationally intensive applications (relevant for visualization), and the performance
gap is expected to increase rapidly. GPU processing is no longer restricted to the mapping and
rendering stages of the visualization pipeline, but can now also be fruitfully applied in the data
processing stage and even the data generation stage (in the case of simulations). Nevertheless,
there are still technological obstacles which need to be overcome. A major limitation is the
relatively small amount of memory (1 GB) available on current graphics cards, which greatly
restricts the amount of data which can be loaded into the texture memory. One solution is to use
clusters of computers equipped with modern graphics hardware [128]. The recent PCI Express
bus (http://www.pcisig.com), with double the bandwidth of the AGP 8X graphics bus,
accelerates data swapping between texture memory and main computer memory. This allows
for storing large data sets in main memory, and chunks from the main memory are uploaded in
texture memory only when needed.

Obviously, a fast method is not of much help when it produces unreliable results. Therefore,
evaluation of the effectiveness of new methods is also of prime importance. Here one may
think of issues such as accuracy of approximate representations, correctness of segmentations,
perceptual quality of visualizations, user-friendliness of interactive tools, etc. A major problem
is that it is very hard to come up with good evaluation methodologies, although the need for them
is increasingly recognized in the visualization community.

1.2 Interactive morphological and wavelet-based volume pro-
cessing and visualization

Coupled morphological volume processing and feature based volume visu-
alization

Volume processing usually is carried out by operations which are 3D extensions of well-known
signal or image processing algorithms. An important class of such algorithms are the so-called
morphological filters or operators. In contrast to the classical linear filters, morphological filters
are nonlinear, making their mathematical analysis much harder. Fortunately, a unified theoretical
framework, called mathematical morphology [48, 114, 115], has been developed to describe and
analyze these filters, both for binary and grey-scale or color images.

Today, algorithms for morphological image operations are available within any state-of-the-
art image processing toolbox. Features extracted by morphological techniques may subsequently
be used in a pattern recognition step [57–59, 146, 155]. A notable advantage of morphological
operators is that they can work in the integer domain, which gives computational savings since
no floating-point operations are required. This is very important when one wants to implement
these operations on graphics hardware. Effectiveness may be improved by integrating the two

Introduction 3

steps of data processing and data visualization into a single step in the processing pipeline. For
this purpose, shared data structures for processing and rendering are required; cf. Fig.1.1.

Although some work has been done on applying morphological techniques in computer
graphics and visualization [75, 80, 85, 108, 110], a large body of morphological techniques re-
mains unexplored in this area. Given their excellent feature extraction capabilities, investigating
the usefulness of these techniques in interactive volume processing and visualization is a very
promising research area. Although this thesis focuses primarily on generic techniques, we will
test our methods in various application domains such as medical imaging, but the methods will
also be relevant for areas like feature-based flow visualization [103].

λ = 0 λ = 10000 λ = 60000 λ = 90000

Figure 1.1. Volumetric filtering of the foot dataset using volume as an attribute [151]. The
iso-value threshold t is fixed to t = 80. As the threshold λ increases, more and more objects
disappear. For λ = 10000 most of the noise still visible in the left-most image disappears.
Ultimately, only the largest components remain, i.e., the metatarsal and phalanges of the great
toe.

Multiscale visualization based on adaptive wavelets and morphological pyra-
mids

Wavelets provide an excellent mathematical framework for systematic decomposition of data into
versions at different levels of detail. By suppressing small wavelet coefficients corresponding to
noise or uninteresting details in the data, a much more sparse data representation is obtained,
making wavelets an interesting tool for data compression and denoising. Wavelet-based visual-
ization provides the user with views of a coarse approximation of the data, which can be refined
on demand. Examples are wavelet ray-casting [42,45,55,152], wavelet splatting [41] and exten-
sions thereof [148, 149], and wavelet-based Fourier volume rendering [43, 147, 150]. Recently,
the combination of a wavelet-based octree representation and rendering by 3-D texture mapping
has been introduced [46].

Goutsias and Heijmans [39,49] developed a general framework for multiresolution decompo-
sition of multidimensional data, which includes both linear wavelet analysis, linear and morpho-
logical pyramids and morphological wavelets as special cases. In contrast to standard wavelets
which require floating point computations, morphological pyramids and morphological wavelets
have the advantage that they require only fast integer-arithmetic operations.

4 1.2 Interactive morphological and wavelet-based volume processing and visualization

For the case of nonlinear pyramids (see Fig. 1.2), approximations {fj} of increasingly re-
duced size are computed by a reduction operation:

fj = REDUCE (fj−1), j = 1, 2, . . . L.

Here j is called the level of the decomposition, and f0 is the initial data set. In the case of a
Gaussian pyramid, the REDUCE operation consists of Gaussian low-pass filtering followed by
downsampling [15]. By taking the (generalized) difference between fj and an expanded version
of fj+1, detail signals dj = fj −̇ EXPAND (fj+1) are computed. Under mild conditions, one has
perfect reconstruction, that is, f0 can be exactly reconstructed by the recursion:

fj = EXPAND (fj+1) u dj, j = L− 1, . . . , 0.

For the linear case (Laplacian pyramid), u and −̇ are ordinary addition and subtraction, and
the EXPAND operation consists of upsampling followed by Gaussian low-pass filtering [15]. In
the case of morphological pyramids, u is the maximum operation (and −̇ is defined such that
perfect reconstruction will hold) and the REDUCE and EXPAND operations involve morphological
filtering [39, 49].

REDUCE

EXPAND

f 0
f Lf1 f2

d0 d1
f L

REDUCE

EXPAND

....

.... EXPAND +

dL−1f L

EXPAND +

dL−2

EXPAND +

d0

f L−1
f L−2

f 0
....

....

Figure 1.2. Pyramid scheme; left: analysis, right: synthesis.

Building upon this work, a multiresolution approach based on morphological pyramids was
developed by Roerdink and applied to maximum intensity projection (MIP) volume rendering,
often used in visualization of medical angiography data sets [104–106]. This allows integrated
filtering and fast data exploration (based on reduced pyramid data). Such user interaction may
take the form of setting window and level, a common practice in a medical setting, or rendering
only thin slices of data, as in sliding thin slab visualization [140]. Special care is required in
choosing the morphological operators to ensure that (i) the MIP operation can be carried out in
the transformed domain; (ii) the EXPAND operations are only carried out in the 2D image plane;
(iii) detail coefficients can be efficiently coded (only nonzero voxels should be coded, which may
save up to 95% of memory for sparse data) [104, 106]. Further improvements are possible by
using morphological connectivity preserving filters in the construction of the pyramid [105,107].
The best results so far have been obtained by streaming MIP-splatting, which resorts all detail
coefficients in decreasing magnitude and projects only those coefficients needed to attain a user-
defined accuracy [107], see Fig. 1.3.

Introduction 5

(a) original (b) level-1 (c) streaming

Figure 1.3. Multiresolution MIP reconstruction from a 2-level morphological pyramid. (a):
full-scale MIP; (b) level-1 MIP; (c) streaming MIP. The absolute errors are 0.676 for (b) and
0.301 for (c). The fraction of nonzero detail coefficients taken into account is 3.4% in both
cases [107].

+

P U P

+

U

-

x x

y y

x’

y’

D

+d

-

x

y

x’

y

Ud

(a) (b)

Figure 1.4. (a) Lifting scheme (left: analysis, right: synthesis). (b) Adaptive update lifting
scheme (analysis phase).

Wavelet lifting

A general and flexible approach for the construction of nonlinear (morphological) wavelets is the
lifting technique of Sweldens [131, 133]. Starting with a given approximation part x and a detail
part y, a prediction operator acting on the input x is used to modify y, resulting in a new detail
signal y′. Next, an update operator U acting on y′ modifies x, leading to a new approximation
signal x′. In the synthesis phase, the signals x and y are exactly recovered by reversing the lifting
steps, see Fig. 1.4(a). One may concatenate any number of lifting and prediction steps to improve
an original decomposition.

An extension to wavelet lifting is adaptive lifting, where update and/or prediction filters
adapt themselves to the local data content. In [102] a special update lifting scheme is presented
which allows perfect reconstruction without any additional bookkeeping, see Fig. 1.4(b). Here a

6 1.3 Level sets

decision map D is used whose output is a set of parameters d at each data location, which govern
the choice of the update step, and also the addition step which produces x′.

An important property of the lifting scheme is that it allows in-place calculation, so that no
additional memory has to be allocated. This feature is extremely useful in handling large data
sets, and is yet another motivation for applying this technique in interactive volume processing
and visualization.

1.3 Level sets
It has been shown [50] that in the continuous case, an implicitly defined surface (curve) that
expands/shrinks with constant speed corresponds to a flat morphological dilation/erosion of the
underlying implicit function. In fact, materializations of these ideas are usually provided within
the level-set framework [97], which has found applications in a wide variety of scientific fields,
ranging from chemistry and physics to computer vision and graphics. For example, in computer
vision, most state-of-the-art segmentation techniques are based on level sets to steer the evolving
contour or surface towards the objects of interest [138].

The main idea of the level set method is to represent the dynamic interface (e.g., contour, sur-
face, etc.) implicitly and embed it as the zero level set of a time-dependent, higher-dimensional
function. Then, evolving the interface with a given velocity in the normal direction becomes
equivalent to solving a time-dependent partial differential equation (PDE) for the embedding
level set function, see Fig. 1.5. The main advantage of the level set method is that it allows the
interface to undergo arbitrary topological changes, which is much more difficult to handle using
explicit representations.

The flexibility offered by the level set method does not come for free. One has to solve the
time-dependent level-set PDE in a higher-dimensional space than that of the embedded interface,
which makes the solution slow to compute. Also, the memory requirements are higher than the
size of the interface, as one needs to explicitly store a uniform Cartesian grid for solving the level
set PDE.

To address these issues, a number of techniques have been proposed, such as the narrow-band
schemes [2,21]. Such methods rely on the fact that it suffices to solve the PDE only in the vicinity
of the interface in order to preserve the embedding. Thus, the computational requirements scale
with the size of the interface.

1.4 General purpose computation on graphics hardware
In the last five years the growth in computation speed of single CPU cores has nearly halted.
Physical limitations make it impossible, or at least prohibitively expensive, to increase the clock
speed further above 4 GHz. Also, the additional benefit of dedicating more transistors to deeper
pipelines, bigger caches, and more advanced branch prediction is decreasing quickly [130]. The
ever-increasing demand for computational power creates a necessity for parallel computing. Chip
makers have resorted to adding an increasing number of cores to a chip (multi-core).

Introduction 7

Figure 1.5. Level-set example in 2D. Top row: evolving interface. Bottom row: corresponding
graphs of the embedding function at three different time steps; left-to-right: three initial con-
tours expand at constant speed and eventually merge. The interface is given by the intersection
of a plane (indicated in dark grey) with the graph of the function.

In order to utilize these new cores, software must be adapted. Although basic auto-paral-
lelization is part of every modern compiler, the general problem of deciding how to parallelize a
serial program is too hard for a compiler to solve [130]. Additionally, in many cases, specialized
parallel algorithms perform better than blindly parallelized serial algorithms. This means that
the developer has to “think in parallel”, and hence, parallel computing has returned as an active
area of research.

Multi-core parallelism is only one approach to parallelism. In recent years, GPUs have be-
come increasingly powerful and more programmable. The GPU has moved from being used
solely for graphical tasks to a fully-fledged parallel co-processor, a so-called General Purpose
GPU (GPGPU). Due to the high number of threads that can run at once (more than 1000), the
GPU excels at fine-grain parallelism. From a high level of generalization GPUs can be regarded
as stream processors. The computing power of GPUs is currently increasing at a faster pace than
that of CPUs, which has led to the use of the GPU as the main computation device for diverse ap-
plications, such as physics simulations, neural networks, image compression and even database
sorting.

8 1.5 Thesis contributions and organization

Compute Unified Device Architecture (CUDA)

Initially, GPGPU applications, even though not concerned with graphics rendering, did need to
use the rendering paradigm. With their G80 series of graphics processors in 2006, NVidia intro-
duced a programming environment called CUDA [70] which allows the GPU to be programmed
through more traditional means: a C-like language and compiler. This opened up the world of
GPGPU to researchers and developers outside Computer Graphics.

In addition to this generalization, CUDA also adds some features that are missing in shader
languages: random access to memory, fast integer arithmetic, bitwise operations, and shared
memory. Unlike previous attempts to generalize GPGPU computing such as Brook [14], the
usage of CUDA does not add any overhead, as it is a native interface to the hardware.

Even though GPU programming has grown to be more like conventional programming the
CUDA execution model is quite different from that of CPUs, and also different from that of older
GPUs. A degree of specialization, beyond parallel programming, is still required to develop
algorithms that perform efficiently on GPU hardware.

In conventional multi-core parallelism each thread has a fully functional, independent core.
This is not generally the case in GPU programming, which has multiple levels of parallelism,
with specific features and limitations at each level. Originally, GPUs follow a data-parallel model
of computation, and this is still broadly the case [70].

The CPU invokes the GPU by calling a kernel, which is a C-function that is executed by every
thread. The invocation of this kernel creates a grid, which is the highest level of parallelism. The
grid consists of blocks that execute in parallel, if multiprocessors are available, or sequentially
if this condition is not met. Blocks within a grid cannot communicate with each other, which is
unlikely to change as independent blocks are a means to scalability.

The lowest level of parallelism is formed by threads. As in conventional parallel program-
ming, a thread is a single scalar execution unit. Threads within a block can cooperate efficiently
by sharing data through fast shared memory. Synchronization points (barriers) can be used to
coordinate operations closely. Even though each thread can perform different operations, the
highest performance is realized if all threads within a (implementation dependent subset) of a
block take the same execution path.

1.5 Thesis contributions and organization

This thesis describes a number of methods and algorithms for real time processing and visual-
ization of large data sets.

Chapter 2 introduces a multiresolution representation for maximum intensity projection (MIP)
volume rendering based on morphological pyramids, which allows progressive refinement. We
consider two algorithms for progressive rendering from the morphological pyramid: one which
projects detail coefficients level by level, and a second one, called streaming MIP, which resorts
the detail coefficients of all levels simultaneously with respect to decreasing magnitude of a suit-
able error measure. The latter method outperforms the level-by-level method, both with respect
to image quality with a fixed amount of detail data, and in terms of flexibility of controlling

Introduction 9

approximation error or computation time. We improve the streaming MIP algorithm, present a
GPU implementation for both methods, and perform a comparison with existing CPU and GPU
implementations.

Chapter 3 shows that the Discrete Wavelet Transform (DWT), which has a wide range of ap-
plications from signal processing to video and image compression, can be performed by means
of the lifting scheme in a memory and computation efficient way on modern, programmable
GPUs, which can be regarded as massively parallel co-processors through NVidia’s CUDA com-
pute paradigm. The three main hardware architectures for the 2D DWT (row-column, line-based,
block-based) are shown to be unsuitable for a CUDA implementation. Our CUDA-specific de-
sign can be regarded as a hybrid method between the row-column and block-based methods.
We achieve considerable speedups compared to an optimized CPU implementation and earlier
non-CUDA based GPU DWT methods, both for 2D images and 3D volume data. Additionally,
memory usage can be reduced significantly compared to previous GPU DWT methods. The
method is scalable and the fastest GPU implementation among the methods considered. A per-
formance analysis shows that the results of our CUDA-specific design are in close agreement
with our theoretical complexity analysis.

Chapter 4 integrates the scalable and fast GPU Discrete Wavelet Transform implementation
of the previous chapter into the Dirac Wavelet Video Codec (DWVC), which is a royalty-free
open-source wavelet-based video codec. The overlapped block motion compensation and frame
arithmetic have been accelerated using CUDA as well.

Chapter 5 presents an approach for rendering the surface of particle-based fluids that is sim-
ple to implement, has real-time performance with a configurable speed/quality trade-off, and
smoothes the surface to prevent the fluid from looking “blobby” or jelly-like. The method is
not based on polygonization and as such circumvents the usual grid artifacts of marching cubes.
It only renders the surface where it is visible, and has inherent view-dependent level-of-detail.
Perlin noise is used to add detail to the surface of the fluid. All the processing, rendering and
shading steps are directly implemented on graphics hardware.

Chapter 6 presents efficient data structures and algorithms for tracking dynamic interfaces
through the level set method, which has become the favorite technique for capturing and track-
ing moving interfaces, and found applications in a wide variety of scientific fields. Several ap-
proaches which address both computational and memory requirements have been very recently
introduced. We show that our method is up to 7.2 times faster than these recent approaches. More
importantly, our algorithm can greatly benefit from both fine- and coarse-grain parallelization by
leveraging SIMD and/or multi-core parallel architectures.

In chapter 7 we leverage the increased computing power of graphics processors, to achieve
fast simulations based on level sets. Our highly-efficient, sparse level set method is about two
orders of magnitude faster than other state-of-the art techniques. To further investigate its ef-
ficiency, we present two standard graphics applications: surface reconstruction and level-set
surface editing. Our novel multi-resolution method for surface reconstruction from unorganized
point clouds compares favorably with recent, existing techniques and other parallel implementa-
tions. Additionally, we show that free-form editing operations and rendering of level-set surfaces
can be performed at interactive rates, even on large volumetric grids. Finally, virtually any other
application based on level sets can benefit from our sparse level set method.

10 1.5 Thesis contributions and organization

Finally, in chapter 8 we summarize our work, draw some general conclusions and present a
future outlook.

First published as: Wladimir J. van der Laan, Andrei C. Jalba, and Jos B. T. M. Roerdink. Multiresolution MIP
Rendering of Large Volumetric Data Accelerated on Graphics Hardware. In Proc. Eurographics/IEEE VGTC
Symposium on Visualization (EuroVis), pages 243-250, 2007.

Chapter 2

Multiresolution MIP rendering on graphics
hardware

2.1 Introduction

This chapter is concerned with the development of efficient algorithms for Maximum Intensity
Projection (MIP) on graphics hardware. MIP is a method frequently used to visualize volumetric
data originating from magnetic resonance angiography (MRA) and ultrasound data. As scanner
precision increases larger datasets are generated, for which a large amount of memory and pro-
cessing capacity is consumed for representing and rendering these volumes. Hence, research is
necessary into more efficient MIP rendering algorithms that maintain image quality, e.g., have a
fixed error bound. An established method to obtain this goal is the use of multiresolution meth-
ods. Since the MIP transform is nonlinear, the standard linear multiresolution models based on
wavelets [44, 71, 147] are not applicable. Instead, morphological pyramids involving nonlinear
filtering operations can be used for multiresolution rendering.

We present novel MIP algorithms which exploit the programmability of modern graphics
hardware. The class of algorithms which we investigate makes use of morphological pyramids
as the underlying representation of the volumetric data. Our algorithms are based on the so-
called Multiresolution Maximum Intensity Projection (MMIP) method developed by one of us
[106, 107]. This method enables the user to visualize large datasets in real time with progressive
refinement. After computing the pyramid representation in a preprocessing step, the pyramid
levels can be projected individually for progressive rendering. In preview mode, the lower levels
of the pyramid are projected first to show a coarse approximation, which can be quickly refined
to the original on demand.

A disadvantage of projecting one level at a time is that the approximation quality improves
in discrete jumps, as determined by the levels of the pyramid. To overcome this, streaming MIP
was introduced in [107], which is based on resorting the detail coefficients of all pyramid levels
simultaneously with respect to decreasing magnitude of a suitable error measure. All resorted
coefficients are projected successively, until a desired accuracy of the resulting MIP image is
obtained, thus allowing for continuous error control.

The main contributions are:

12 2.2 Previous and related work

• An improved method for computing streaming MIP rendering

• A GPU implementation of the level-by-level MMIP and the streaming MIP algorithms,
with the advantage that we can spread the load and the dataset over multiple graphics
cards in a straightforward way, thereby achieving support for large volume data with an
almost optimal speedup.

We perform comparisons with existing CPU and GPU techniques for MIP volume rendering
on large datasets and show the improvement which we obtain by our approach.

2.2 Previous and related work

In the case of MIP a multiresolution decomposition scheme cannot rely on linear operations.
Therefore, in [104] a morphological pyramid scheme was proposed for MIP volume render-
ing with progressive refinement. Such pyramids, which involve nonlinear spatial filtering by
morphological operators, systematically split the volume data into approximation and detail sig-
nals [39]. As the level of the pyramid is increased, spatial features of increasing size are extracted.
Morphological pyramids combine feature extraction with accelerated rendering in preview mode.
A disadvantage of the above method is that the approximation accuracy makes a jump each time
as an additional level of detail signals is taken into account. To allow for continuous error con-
trol, the streaming MIP method was proposed in [107] and it was found to outperform the MMIP
method, both with respect to image quality with a fixed amount of detail data, and in terms of
flexibility of controlling approximation error or computation time.

The type of morphological pyramid considered here is appropriate in the context of MIP
because the morphological operation of dilation (involving the computation of maxima of voxel
values in a local neighborhood) is compatible with the maximum computation involved in MIP,
just as linear pyramids or wavelet representations [71,147] are the right tool for the case of linear
X-ray rendering. Even though the morphological operators are nonlinear and non-invertible,
the pyramid scheme does allow perfect reconstruction. Therefore, after the pyramid has been
constructed the original volume data can be discarded. Also, only integer computations are
required.

To allow for compression domain rendering, it is essential to use a (fast) MIP implementa-
tion which can work directly on the data structures used to represent the pyramid. This can be
achieved by a voxel projection method with an efficient volume data storage scheme [86], see
section 2.4.1. This method is analogous to point-based rendering (PBR) which has been used
for both surface and volume representations [112]. A major challenge of PBR algorithms is ac-
curate interpolation between discrete point samples. We achieve this by means of an additional
morphological closing of the output image.

Previous work on mapping elementary morphological operations to graphics hardware in the
context of volume rendering and analysis can be found in [51].

Multiresolution MIP rendering on graphics hardware 13

2.3 Overview of the multiresolution MIP algorithm
We first define some elementary morphological operators [114]. Next we introduce morpholog-
ical pyramids, in particular adjunction pyramids. Finally, we will discuss how morphological
pyramids are used for efficient MIP rendering.

2.3.1 Morphological operators
Let f be a signal with domain F ⊆ Zd, and A a subset of Zd called the structuring element. The
dilation dA(f) and erosion εA(f) of f by A are defined by

dA(f)(x) = max
y∈A,x−y∈F

f(x− y), (2.1)

εA(f)(x) = min
y∈A,x+y∈F

f(x+ y). (2.2)

Dilation and erosion simply replace each signal value by the maximum or minimum in a neigh-
borhood defined by the structuring element A. The opening αA(f) and closing φA(f) of f by
A are defined by αA(f)(x) = dA(εA(f))(x), and φA(f)(x) = εA(dA(f))(x). So openings and
closings are products of a dilation and an erosion. The opening eliminates signal peaks, the
closing valleys.

2.3.2 Pyramids
The general structure of (non)linear pyramids is as follows. From an initial (2-D or 3-D) data set
f0, approximations {fj} of increasingly reduced size are computed by a reduction operation:

fj = REDUCE (fj−1), j = 1, 2, . . . L.

Here j is called the level of the decomposition. An approximation signal associated to fj+1 may
be defined by taking the difference between fj and an expanded version of fj+1:

dj = fj −̇ EXPAND (fj+1). (2.3)

The set d0, d1, . . . , dL−1, fL is referred to as a detail pyramid. Here −̇ is a generalized subtraction
operator (see below). Assuming there exists an associated generalized addition operator u such
that, for all j,

f̂j u (fj −̇ f̂j) = fj, where f̂j = EXPAND(REDUCE (fj)),

we have perfect reconstruction, that is, f0 can be exactly reconstructed by the recursion

fj = EXPAND (fj+1) u dj, j = L− 1, . . . , 0. (2.4)

To guarantee that information lost during analysis can be recovered in the synthesis phase in a
non-redundant way, one needs the so-called pyramid condition:

REDUCE (EXPAND (f)) = f, for all f. (2.5)

14 2.3 Overview of the multiresolution MIP algorithm

In the case of morphological pyramids, the REDUCE and EXPAND operations involve morpho-
logical filtering [39]. For the simplest case of the so-called adjunction pyramids [104], the mor-
phological operators are the dilation dA(f) and erosion εA(f) with structuring elementA defined
in (2.1) and (2.2), respectively. Then the REDUCE and EXPAND operators are denoted by ψ↑A and
ψ↓A, respectively, and have the form

REDUCE : ψ↑A (f) = DOWNSAMPLE (εA(f)), (2.6)

EXPAND : ψ↓A (f) = dA (UPSAMPLE (f)), (2.7)

where the arrows indicate transformations to higher (coarser) or lower (finer) levels of the pyra-
mid. Here DOWNSAMPLE and UPSAMPLE denote downsampling and upsampling by a factor of 2
in each spatial dimension. The pyramid condition (2.5) is satisfied, if there exists an a ∈ A such
that the translates of a over an even number of grid steps are never contained in the structuring
element A; see [39] for more details.

In an adjunction pyramid, the product ψ↓Aψ
↑
A is an opening. The anti-extensivity property of

openings [48] implies that ψ↓Aψ
↑
A (f) ≤ f . Therefore, we can define the generalized addition and

subtraction operators u and −̇ appearing in (2.3) by (cf. [39]):

tu s = t ∨ s = max(t, s), t −̇ s =

{
t, if t > s

0, if t = s
(2.8)

where 0 is the smallest image or voxel value possible. As a consequence, the detail signals are
nonnegative:

dj(n) = fj(n) −̇ ψ↓A ψ
↑
A (fj)(n) ≥ 0. (2.9)

Note that the definition of −̇ in (2.8) implies that the detail signal dj(n) equals fj(n), except at
points n for which fj(n) = ψ↓Aψ

↑
A (fj)(n), where dj(n) = 0. So, detail signals are not ‘small’ in

regions where the structuring element does not fit well to the data.
For an adjunction pyramid with the generalized addition being defined as the maximum op-

eration (see (2.8)), the reconstruction takes a special form [106]:

f = ψ↓A
L(fL) ∨

L−1∨
k=0

ψ↓A
k(dk). (2.10)

Here L is the decomposition depth, ψ↓A
k denotes k-fold composition of ψ↓A with itself, and ∨

denotes the maximum operator.

2.3.3 Multiresolution MIP algorithm
The adjunction pyramid representation does allow to interchange the MIP operator (computing
maxima along the line of sight) with the pyramidal synthesis operator, because both the upsam-
pling operation and the dilation dA commute with the maximum operation [104,106]. As a result,
the MIP operation can be performed on a coarse level (reduced data size) before performing a

Multiresolution MIP rendering on graphics hardware 15

cheap 2-D EXPAND operation to a finer resolution, thus leading to a computationally efficient
algorithm.

We write the MIP operation asMΘ, with Θ = (θ, φ, α), where θ and φ are the two angles
defining the projection direction vector perpendicular to the view plane, and α gives the orienta-
tion of the view plane with respect to this vector. Successive approximations of the MIP of f are
denoted by M

∧

Θ
(j)(f), j = L,L− 1, . . . , 0. These approximations all have the size of the MIP of

the full data f in the image plane.
The MMIP algorithm for an adjunction pyramid is as follows. From a level-j approximation,

the next approximation on level j − 1 is obtained by first computing the MIP of dj−1, then j − 1

times applying the 2-D pyramid synthesis operator ψ↓
Ã

to the projection, and finally taking the
maximum of the image so obtained with the previous approximation. Here ψ↓

Ã
is a 2-D EXPAND

operator which has the same form as (2.7), that is, 2-D upsampling followed by a 2-D dilation,
but with a structuring element Ã which is the MIP of A, that is, Ã := MΘ(A). It is clear
that M

∧

Θ
(j−1)(f) ≥ M

∧

Θ
(j)(f), since from (2.9) the details signals dj−1 are nonnegative. So the

projections increase pointwise as one goes down the pyramid.

2.3.4 Streaming MIP
Here we summarize the construction of the coefficient stream and the rendering for streaming
MIP.

Construction of the detail coefficient stream. By the commutativity of the pyramidal synthe-
sis operator with the maximum operation we can project the elements of the detail coefficients in
any order on the image plane, not necessarily level by level, as we have done so far. So one can
join the detail coefficients of all levels and sort these according to some error measure. We do not
sort the detail coefficients {dj} directly. As can be seen from (2.9), the detail coefficients are not
small in regions where the structuring element does fit approximately, but not exactly, to the data.
Therefore an auxiliary set of detail coefficients can be defined which can be sorted with respect
to decreasing magnitude. Then the original detail coefficients {dj} are resorted by giving them
the same order as the resorted auxiliary coefficients, which are subsequently discarded; see [107]
for details.

As a result of the construction phase, we have obtained an ordered list of detail coefficients
dj(x, y, z), which can be used to compute the MIP of the input data. By construction, the order is
such that each successive coefficient, when taken into account, maximally reduces the L1-error
between the partial reconstruction and the original data.

Rendering phase. In the MIP rendering phase, all sorted coefficients {dj(x, y, z)} are pro-
jected successively, until an a-priori chosen maximum number of coefficients has been projected,
or a desired accuracy of the resulting MIP image is obtained. When a coefficient k is projected,
its value val is compared to the current value curval at the point of projection in the image plane,
and curval is overwritten when curval < val. Also, when the level of the coefficient is j, a local
dilation of size j has to be carried out, i.e., all pixels in the scaled neighborhood j · Ã around the

16 2.4 Implementation on graphics hardware

point of projection are overwritten by val when their current value is smaller than val. Note that
we cannot do the dilation globally, in contrast to the case of the level-by-level projection where
the scale index is constant per level.

2.4 Implementation on graphics hardware
As discussed in section 2.3.2, the morphological pyramid of a dataset is built in a preprocessing
step. For the MMIP projection which works level by level, each level is rendered separately using
a MIP volume rendering method. Intermediate levels are rendered to a texture, starting from the
coarsest level, after which the 2-D synthesis operator ψ↓

Ã
is applied and the result combined

with the previous approximation, successively taking the detail signals into account. This two-
dimensional synthesis operator is implemented as a fragment program which maps a N × M
texture to a 2N × 2M texture. The upsampling and dilation steps are rolled into one pass for
efficiency. The levels are combined using the frame-buffer maximum operation. In what follows
we discuss the separate steps in detail.

2.4.1 Per-voxel projection
To avoid processing empty space we use an object-order voxel-projection method [86], where
one loops through the volume and projects all non-zero voxels in value-sorted order with each
voxel contributing to exactly one pixel. By projecting the voxels from low to high value, old
values in the image plane can simply be overwritten by current values. This allows for MIP
rendering without expensive read-compare-write GPU cycles. This method also uses an effi-
cient scheme for storing the volume data, based on histogram-based sorting of non-zero voxels
according to their grey value. After the sorting step the voxels are represented by an array of po-
sitions. An additional array contains the cumulative histogram values. All levels of the pyramid
are created and stored as value-sorted arrays.

2.4.2 Representing the detail coefficients
The voxel data are stored in a buffer that is created with the ARB vertex buffer object
extension. This extension defines an interface that allows data to be cached in high-performance
graphics memory tailored to the use of these buffers, thereby increasing the rate of data transfers.
A static buffer is requested that will be filled once by the application, and used many times as the
source for GL drawing commands. The voxels of the volume are stored in a continuous region
sorted per intensity value. The second structure, the histogram, is kept with the begin and end
offsets in this buffer, for each intensity value. Voxels with one intensity level can then simply be
sent to the vertex processor by invoking glDrawArrays once, with the begin and end values
as found in this histogram.

The most naive implementation stores the intensity, x, y and z coordinate in shorts, and
uses 8 bytes per voxel. The different attributes are provided to the vertex program as texture
coordinates. Rows of consecutive voxels will have the same intensity value, as represented in the

Multiresolution MIP rendering on graphics hardware 17

histogram. Storing this with each voxel is very redundant, as the histogram acts as a kind of run-
length-encoding. A shader constant or texture coordinate can be set to the intensity for each span
of voxels with equal intensity. Now we are left with 6 bytes per voxel (2 bytes per coordinate).
Theoretically this will allow for volumes up to 655363. In practice we cannot support such large
volumes as they will not fit into memory on current hardware.

Let us assume that we want to reduce the memory requirements to 4 bytes per voxel (two
GL SHORTs). This means we have 32 bits available. Distributing this over X , Y and Z like
12 + 10 + 10 (4096×1024×1024) will suffice for even huge volumes. We can unpack these in a
vertex program. For GPUs that do not have bit shift and logical operators, these can be emulated
with multiplication by a fraction (computed using the floor Cg function) and subtraction. Overall,
this results in a major speedup for large volumes. Even though this unpacking requires some extra
computation this is easily out-weighted by the savings in memory usage and the associated gain
in the ratio of memory bandwidth to voxel count.

2.4.3 Projecting the detail coefficients

Coefficients to render

Inactive coefficients

Histogram

Vertex buffer

Project detail coefficient

Set intensity

Unpack attributes

Vertex program(with sorted list of detail coefficients)

(render points)

Frame buffer

Figure 2.1. The process of selection, projection and rendering of detail coefficients for one
level of the pyramid. The white histogram is the histogram of the dataset, the (overlaid) black
histogram shows the subset of the detail coefficients that is selected according to some the
criterion.

For the sake of clarity, but without sacrificing generality, we have used orthogonal projection
throughout all examples. We build a model-view matrix from a quaternion which represents
the orientation of the volume and a zoom factor (which defaults to 1 voxel on 1 pixel), both of
which can be interactively adjusted. The projection matrix and the model-view matrix are then
combined into a 4× 4 model-view-projection matrix and passed to the vertex shader.

The entire volume is projected by iterating over the intensity values present in the volume,
starting from the lowest (or from a user defined threshold below which everything is background)
and stopping at the highest. If there is an upper intensity threshold above which everything has
the maximum intensity, all these voxels can be projected with one call to glDrawArrays,

18 2.4 Implementation on graphics hardware

which is set to draw point primitives (without rounding or anti-aliasing). This is illustrated in
Figure 2.1.

A multi-level representation is incorporated into the algorithm by storing the voxels for the
different levels separately. One needs to store L+1 volumes for an L-level decomposition: detail
levels d0 . . . dL−1 and the approximation fL. These volumes are rendered in the same fashion as
described already. Level 0 is rendered to a quad of the same size as the viewport, level 1 is
rendered to a half-sized quad, level 2 to a quarter-sized one, and so on.

2.4.4 Load balancing
The MMIP algorithm has the advantage that we can spread the load and the dataset over multiple
graphics cards in a straightforward way. In this way large volumes can be supported, and an al-
most optimal speedup is obtained. Fortunately, the newer NVidia drivers support multiple cards
for one X-server for multiple screens. To render to both simultaneously, a GL Context is cre-
ated on both X-screens, and rendering is switched between them one time per frame. Finally, the
results of both cards are combined. Because the result of the second card is combined with that
of the first, the second card does not necessarily have to be connected to a monitor at all. At the
moment there is no extension for directly shuffling data between two cards, so the intermediate
result will have to pass through the CPU. We found that using glReadPixels on one context
and then glDrawPixels on the other one was the only currently available way of doing this.
Our timings show that the preferred pixel format for this is GL UNSIGNED INT 8 8 8 8.

To utilize multiple cores or multiple processors, it was also attempted to put the rendering
loop for each context in a different thread. This did not result in any performance gain. This is
most probably because the algorithm is GPU bound, and the only processing done by the CPU is
queuing commands and data to the GPU. Spreading this tiny load over multiple CPUs also does
not outweigh the synchronization overhead.

The best performance was achieved by splitting the sorted array of voxels equally over both
cards by interleaving the detail coefficients (also splitting the histogram) for each pyramid level.
The coefficients are interleaved instead of being split in the middle to better divide the load in
case of progressive refinement. In the end, the resulting images are combined using a pixel-wise
maximum operator.

2.4.5 Streaming MIP
Streaming MIP can be implemented similarly using point rendering. For each voxel, we will
have to store an extra attribute, namely the originating pyramid level. The level can be rolled
into two bits of the position attribute (see section 2.4.2), which spans 4 bytes, and for intensity
another short is required, making a total of 6 bytes per voxel.

To implement the level-dependent local dilation (see section 2.3.4) the size of the output
voxel can be set using the point size extension to the ARB vertex program assembly language
(which maps to the PSIZE output semantic in Cg). For example, assuming a square structuring
element of size 2×2, the point size will be 1, 2 and 4 at level 0, 1 and 2, respectively. The specific
shape of this point for each level depends on the structuring element A and the projection angle.

Multiresolution MIP rendering on graphics hardware 19

If the projection of A is not square, the point sprite extension is used to apply a specific shape to
the point.

In addition to the increased memory usage, the fact that voxels are no longer ordered by
intensity means that the writes to the frame buffer now have to be done with the maximum
operator enabled. This results in some loss of performance, but not a huge one as the blended
primitives are small. However, we will show next that this can be done in an even more efficient
way.

2.4.6 Optimized streaming MIP

Note that the order in which the detail coefficients are rendered is not important, even though
this method sorts them in a specific order. Therefore, the error-sorted list of details is not used
to set the rendering order but only to guide setting the error for speed/quality tradeoff. The
sorted array of detail coefficients, resulting from the preprocessing as required for streaming
MIP, is subjected to a second histogram-sorting step with one bin per (level, intensity) pair. The
ordering by error is maintained within these bins, having the bins store the position attribute of
each detail coefficient. This results in a more efficient method for streaming MIP that avoids
using point sprites and frame buffer blending, and which uses only four bytes per voxel.

The level and intensity attributes of the detail coefficients are kept in their original sorted
order in one big list. The resulting histogram and sorted list can be used for rendering the entire
dataset (or a per-level approximation) and also for streaming MIP rendering. This is implemented
as follows. A percentage of detail coefficients to be rendered is chosen, after which the corre-
sponding part of the sorted list is traversed. For each pyramid level the voxels are then rendered
in a low-to-high intensity order, guided by the complete histogram and the number of coefficients
that need to be rendered. This is the same algorithm as in section 2.4.1, except that an additional
histogram is used to select which coefficients to render. With this new algorithm we have all the
advantages of streaming MIP without any of the drawbacks mentioned in section 2.4.5.

2.4.7 Post-processing

For non axis-aligned parallel projections the voxel-based method can yield pixel-sized holes in
the result. A post-processing step based on a morphological closing step with the structuring
element Ã used for synthesis can fill these holes effectively and efficiently.

2.5 Results

In this section we report some experimental results. All performance measurements were carried
out on a machine with dual AMD Opteron 280 processor and two GeForce 7900GTX graphics
cards. Unless mentioned otherwise, only one of the cards (and one of the CPUs) is active.

Table 2.1 shows the percentage of detail coefficients rendered for the Visible Woman dataset
(dimensions 512×512×1734, and a total of 210 million detail coefficients) versus three different

20 2.5 Results

Table 2.1. Approximation error as a function of the percentage of detail coefficients kept to
render the VisibleWoman dataset (dimensions 512×512×1734 and a total of 210 million detail
coefficients). Three different error measures are shown (maximum, relative L1 and median),
and the performance is given in frames per second (FPS).

Coeffs. Error FPS
(%) max relative L1 median

100 0 0 0 1.14
50 3 9.6× 10−5 1 2.27
25 8 2.0× 10−3 3 4.41
13 13 1.2× 10−2 4 8.40
6 21 2.6× 10−2 4 15.4
1 63 1.0× 10−1 7 51.2

Table 2.2. Approximation error as a function of the percentage of detail coefficients kept to
render the XMasTree dataset (dimensions 512 × 512 × 512 and a total of 105 million detail
coefficients). Three different error measures are shown (maximum, relative L1 and the median),
and the performance is given in frames per second (FPS).

Coeffs. Error FPS
(%) max relative L1 median

100 0 0 0 2.80
50 5 1.3× 10−4 3 5.60
25 10 5.8× 10−4 4 10.6
13 22 1.8× 10−3 4 19.6
6 33 7.2× 10−3 7 33.6
1 177 7.0× 10−2 25 100.6

error measures, and the performance in frames per second. Table 2.2 shows the same results for
the XMasTree dataset (512× 512× 512, and a total of 105 million detail coefficients).

In both tables, the maximum error measure (L∞ norm) is the maximum difference in grey
level between the original full quality MIP image and the approximation. However, this measure
is not very representative for the perceived error. The median error measure is calculated by
taking the median of the grey level differences (excluding the zero ones). The median error is
expressed in grey levels and provides a good indication of how much the approximation differs
from the original, not being very sensitive to outliers and noise. The relative L1-approximation

Multiresolution MIP rendering on graphics hardware 21

Table 2.3. Performance in frames per second (FPS) for the Visible Woman dataset in a 512 ×
512 viewport for various MIP methods: (i) the most common texture-based volume rendering
method; (ii) GPU ray-casting; (iii) MMIP, rendering everything but the highest detail level (iiii)
streaming MIP, for an optimized software implementation, the GPU implementation (for two
error settings), and for the workload distributed over two GPUs.

Method Error (L1) FPS

3-D Texture-based - 1.0
GPU ray-casting [66] - 2.0
MMIP, 2 levels (GPU) 0.16 (median 8) 8.0
Streaming MIP (software) 0.0 0.2
Streaming MIP (software) 0.07 (median 4) 3.5
Streaming MIP (GPU) 0.0 1.1
Streaming MIP (GPU) 0.07 (median 4) 18.4
Streaming MIP (2x GPU) 0.0 2.0
Streaming MIP (2x GPU) 0.07 (median 4) 30.2

error measure between the original image M(0) and approximation M(j) is defined as:

ε(j) =
∥∥M(0) −M(j)

∥∥ / ∥∥M(0)
∥∥ ,

where ‖·‖ represents the L1 norm.
Visually, the error remains quite unnoticeable until the median error reaches a value around

5 to 7 (on the datasets which we experimented with), after which it generally starts to rise and
artifacts appear. For interactive purposes a large reduction percentage (1-5 %) of the detail coef-
ficients is acceptable, with a corresponding increase in performance. Also, it can be seen that the
frame rate approximately doubles each time the number of detail coefficients is halved, so the
relation between rendering time and amount of retained detail coefficients is linear.

Table 2.3 shows a comparison of various methods on the VisibleWoman dataset: (i) a brute
force 3D texture-based method using view-aligned slices and frame buffer blending; (ii) GPU
ray-casting [66]; and (iii) our streaming MIP implementations, both in software and on one or
two GPUs, for various error levels. The render viewport was set to 512 × 512 in all cases. For
both texture-based methods the dataset was split into four, three blocks of 512× 512× 512 and
one of 512× 512× 198, because the hardware does not support 3D textures larger than 5123.

When full reconstruction is performed, the streaming MIP in software achieves approxi-
mately the same performance as the 3D texture-based method. GPU ray-casting outperforms
that method by making smart use of fragment programs and early ray termination. Streaming
MIP starts to become interesting when allowing for a certain error. For example, when we admit
a hardly visible error (L1 error bound of 0.07, or median of 4 grey levels) we can achieve an
interactive frame rate of 18 frames per second. Compared to the optimized software implemen-
tation, the GPU version is about six times faster given the same dataset and error bound. Using

22 2.6 Discussion

two cards we achieve a speed up of almost a factor of two. In preview mode, a larger error may
be acceptable (say median 7), which increases the performance to 50 FPS.

From this it can be concluded that our method works especially well on large datasets that do
not fit into the memory of the graphics card(s) at once, and take too long to render using standard
GPU ray-casting at the original resolution. With our method, such volumes can be rendered in
real time, albeit a tradeoff between rendering quality and performance/resource usage has to be
made.

Some MIP images obtained by our optimized method are shown in Figures 2.2 and 2.3. The
first figure displays the MIP rendering of the XMasTree data set, for two different error levels.
In the lower quality rendering (the left image) some degradation is visible in the background and
at the base of the tree, but there is only a small difference in the tree itself. Figure 2.3 shows a
rendering of the entire visible woman dataset at four error levels. The images on the first row
show hardly any visible differences. However, the zoomed-in excerpts reveal some differences
for strongly reduced coefficient percentages: at 5% the fine details of the ribs are still visible,
whereas at 1% the image is visibly somewhat degraded.

Figure 2.2. MIP rendering of the XMasTree data set with 5% of the detail coefficients (left
image) and at full reconstruction (right image).

2.6 Discussion
A number of issues arise which require some further comments.

The sorting step during pyramid construction can take some time depending on the number
of non-zero voxels, which is up to five minutes for the VisibleWoman dataset. Normally this will
not be a problem, but if there is a hard time constraint in processing incoming data the method
is unsuitable. A GPU sorting method can be used to accelerate this step. The most efficient
method we are aware of was introduced by Gress and Zachmann [40], and is based on adaptive
bitonic sorting (complexity O(n log n)). For sorting n values utilizing p stream processor units,
this approach has the optimal time complexity O((n log n)/p). On recent GPUs, this approach
has shown to be remarkably faster than sequential sorting on the CPU.

Multiresolution MIP rendering on graphics hardware 23

0

60

30 Error
(gray levels)

1% 5% 10% 100%

Figure 2.3. MIP rendering of the complete Visible Woman dataset in a 800 by 2000 window
(using streaming MIP Projection). The rendering is shown at various quality settings (given as
percentages of the total number of detail coefficients). The second row shows a detail image
for each quality setting, and the third row shows the difference image in gray levels.

Current graphics hardware does not have enough memory to accommodate very large datasets.
For this method, this is less of a problem as one can decide to only store the most important de-
tail coefficients. With the upcoming generation of Shader version 4 GPUs, virtualisation of the
memory is possible such that GPU memory is mapped on the host system. This will lessen the
memory problem, but the increased access time of external memory can still make it worthwhile
to use an streaming method like this.

Even though point rendering on the current generation of GPU hardware is faster than the
equivalent on the CPU, the algorithm is bound by the vertex units of the GPU, which are still
slower and less in number than the fragment units. This problem will disappear with the upcom-
ing hardware which has unified shader units. This will give a large improvement to rendering
speeds as the graphics hardware can allocate all of the shader units to process points.

Throughout this chapter a three-level pyramid (two detail levels and one approximation level)
was used. It is also possible to use pyramids with more levels but we found no improvement in
image quality or rendering speed with the data sets that were used. Performance even decreased
a bit because more render, upsample, dilation steps are needed. The reason for no gain appears
to be that structuring elements become larger than any structure present in the data, so that the
higher levels have little non-zero coefficients. For even larger datasets the results might improve
with more levels.

No attempt was made to remove voxels that do not contribute to the image from any viewing

24 2.7 Conclusion

angle. According to [86], a view-independent hidden voxel removal step is able to remove about
half of the voxels in a dataset, at the cost of more preprocessing. Assuming this, a speedup in
rendering by another factor of two could be achieved.

2.7 Conclusion
We have investigated a number of algorithms based on morphological pyramids for multiresolu-
tion MIP volume rendering on graphics hardware. We found that our highly-optimized streaming
MIP GPU-method outperforms both its software implementation as well as existing ray-casting
and 3-D texture-based methods.

Using the basic texture-based MIP method for each level, then synthesizing the result is the
most obvious way of implementing multilevel volume rendering. But it is, by definition, not
faster than plain volume rendering, as it does not take much advantage of storing only necessary
voxels and near-continuous error control.

Per-voxel projection, as discussed in this chapter, is more advantageous. It applies point-
based rendering to project the dataset a voxel at a time, and implicitly uses empty space skipping
by only rendering non-empty voxels. The user can interactively adjust thresholds and set the
performance/quality ratio as desired. The algorithm is also cache efficient, as it always addresses
GPU memory in a linear way. In addition, the load and the dataset can be divided over multiple
GPUs to achieve a near-optimal speedup, even for large volume data.

Wladimir J. van der Laan, Andrei C. Jalba, and Jos B.T.M. Roerdink. Accelerating Wavelet Lifting on Graphics
Hardware using CUDA. IEEE Transactions on Parallel and Distributed Systems, 22, 2011, pp. 132-146.

Chapter 3

Accelerating Wavelet Lifting on Graphics
Hardware using CUDA

3.1 Introduction
The wavelet transform, originally developed as a tool for the analysis of seismic data, has been
applied in areas as diverse as signal processing, video and image coding, compression, data min-
ing and seismic analysis. The theory of wavelets bears a large similarity to Fourier analysis,
where a signal is approximated by superposition of sinusoidal functions. A problem, however,
is that the sinusoids have an infinite support, which makes Fourier analysis less suitable to ap-
proximate sharp transitions in the function or signal. Wavelet analysis overcomes this problem
by using small waves, called wavelets, which have a compact support. One starts with a wavelet
prototype function, called a basic wavelet or mother wavelet. Then a wavelet basis is constructed
by translated and dilated (i.e., rescaled) versions of the basic wavelet. The fundamental idea is
to decompose a signal into components with respect to this wavelet basis, and to reconstruct the
original signal as a superposition of wavelet basis functions; therefore we speak a multiresolution
analysis. If the shape of the wavelets resembles that of the data, the wavelet analysis results in
a sparse representation of the signal, making wavelets an interesting tool for data compression.
This also allows a client-server model of data exchange, where data is first decomposed into
different levels of resolution on the server, then progressively transmitted to the client, where
the data can be incrementally restored as it arrives (‘progressive refinement’). This is especially
useful when the data sets are very large, as in the case of 3D data visualization [147]. For some
general background on wavelets, the reader is referred to the books by Daubechies [28] or Mal-
lat [82].

In the theory of wavelet analysis both continuous and discrete wavelet transforms are defined.
If discrete and finite data are used it is appropriate to consider the Discrete Wavelet Transform
(DWT). Like the discrete Fourier transform (DFT), the DWT is a linear and invertible transform
that operates on a data vector whose length is (usually) an integer power of two. The elements
of the transformed vector are called wavelet coefficients, in analogy of Fourier coefficients in
case of the DFT. The DWT and its inverse can be computed by an efficient filter bank algorithm,
called Mallat’s pyramid algorithm [82]. This algorithm involves repeated downsampling (for-
ward transform) or upsampling (inverse transform) and convolution filtering by the application

26 3.1 Introduction

of high and low pass filters. Its complexity is linear in the number of data elements.
In the construction of so-called first generation wavelet bases, which are translates and dilates

of a single basic function, Fourier transform techniques played a major role [28]. To deal with
situations where the Fourier transform is not applicable, such as wavelets on curves or surfaces, or
wavelets for irregularly sampled data, second generation wavelets were proposed by Sweldens,
based on the so-called lifting scheme [132]. This provides a flexible and efficient framework
for building wavelets. It works entirely in the original time/space domain, and does not involve
Fourier transforms.

The basic idea behind the lifting scheme is as follows. It starts with a simple wavelet, and then
gradually builds a new wavelet, with improved properties, by adding new basis functions. So the
simple wavelet is lifted to a new wavelet, and this can be done repeatedly. Alternatively, one
can say that a complex wavelet transform is factored into a sequence of simple lifting steps [29].
More details on lifting are provided in section 3.3.

Also for first generation wavelets, constructing them by the lifting scheme has a number of
advantages [132]. First, it results in a faster implementation of the wavelet transform than the
straightforward convolution-based approach by reducing the number of arithmetic operations.
Asymptotically for long filters, lifting is twice as fast as the standard algorithm. Second, given
the forward transform, the inverse transform can be found in a trivial way. Third, no Fourier
transforms are needed. Lastly, it allows a fully in-place calculation of the wavelet transform,
so no auxiliary memory is needed. With the generally limited amount of high-speed memory
available, and the large quantities of data that have to be processed in multimedia or visualization
applications, this is a great advantage. Finally, the lifting scheme represents a universal discrete
wavelet transform which involves only integer coefficients instead of the usual floating point
coefficients [16]. Therefore we based our DWT implementation on the lifting scheme.

Custom hardware implementations of the DWT have been developed to meet the compu-
tational demands for systems that handle the enormous throughputs in, for example, real-time
multimedia processing. However, cost and availability concerns, and the inherent inflexibility
of this kind of solutions make it preferable to use a more widespread and general platform.
NVidia’s G80 architecture [70], introduced in 2006 with the GeForce 8800 GPU, provides such
a platform. It is a highly parallel computing architecture available for systems ranging from
laptops or desktop computers to high-end compute servers. In this chapter, we will present a
hardware-accelerated DWT algorithm that makes use of the Compute Unified Device Architec-
ture (CUDA) parallel programming model to fully exploit the new features offered by the G80
architecture when compared to traditional GPU programming.

The three main hardware architectures for the 2D DWT, i.e., row-column, line-based, or
block-based, turn out to be unsuitable for a CUDA implementation (see Section 3.2). The biggest
challenge of fitting wavelet lifting in the SIMD model is that data sharing is, in principle, needed
after every lifting step. This makes the division into independent computational blocks difficult,
and means that a compromise has to be made between minimizing the amount of data shared with
neighbouring blocks (implying more synchronization overhead) and allowing larger data overlap
in the computation at the borders (more computation overhead). This challenge is specifically
difficult with CUDA, as blocks cannot exchange data at all without returning execution flow to
the CPU. Our solution is a sliding window approach which enables us (in the case of separa-

Accelerating Wavelet Lifting on Graphics Hardware using CUDA 27

ble wavelets) to keep intermediate results longer in shared memory, instead of being written to
global memory. Our CUDA-specific design can be regarded as a hybrid method between the
row-column and block-based methods. We implemented our methods both for 2D and 3D data,
and obtained considerable speedups compared to an optimized CPU implementation and earlier
non-CUDA based GPU DWT methods. Additionally, memory usage can be reduced signifi-
cantly compared to previous GPU DWT methods. The method is scalable and the fastest GPU
implementation among the methods considered. A performance analysis shows that the results
of our CUDA-specific design are in close agreement with our theoretical complexity analysis.

The chapter is organized as follows. Section 3.2 gives a brief overview of GPU wavelet lift-
ing methods, and previous work on GPU wavelet transforms. In Section 3.3 we present the basic
theory of wavelet lifting. Section 3.4 first presents an overview of the CUDA programming envi-
ronment and execution model, introduces some performance considerations for parallel CUDA
programs, and gives the details of our wavelet lifting implementation on GPU hardware. Section
3.5 presents benchmark results and analyzes the performance of our method. Finally, in Section
3.6 we draw conclusions and discuss future avenues of research.

3.2 Previous and related work
In [52] a method was first proposed that makes use of OpenGL extensions on early non-program-
mable graphics hardware to perform the convolution and downsampling/upsampling for a 2-D
DWT. Later, in [38] this was generalized to 3-D using a technique called tileboarding.

Wong et al. [157] implemented the DWT on programmable graphics hardware with the goal
of speeding up JPEG2000 compression. They made the decision not to use wavelet lifting, based
on the rationale that, although lifting requires less memory and less computations, it imposes
an order of execution which is not fully parallelizable. They assumed that lifting would require
more rendering passes, and therefore in the end be slower than the standard approach based on
convolution.

However, Tenllado et al. [134] performed wavelet lifting on conventional graphics hardware
by splitting the computation into four passes using fragment shaders. They concluded that a gain
of 10-20% could be obtained by using lifting instead of the standard approach based on convo-
lution. Similar to [157], Tenllado et al. [135] also found that the lifting scheme implemented
using shaders requires more rendering steps, due to increased data dependencies. They showed
that for shorter wavelets the convolution-based approach yields a speedup of 50-100% compared
to lifting. However, for larger wavelets, on large images, the lifting scheme becomes 10-20%
faster. A limitation of both [134] and [135] is that the methods are strictly focused on 2-D. It is
uncertain whether, and if so, how they extend to three or more dimensions.

All previous methods are limited by the need to map the algorithms to graphics operations,
constraining the kind of computations and memory accesses they could make use of. As we will
show below, new advances in GPU programming allow us to do in-place transforms in a single
pass, using intermediate fast shared memory.

Wavelet lifting on general parallel architectures was studied extensively in [60] for processor
networks with large communications latencies. A technique called boundary postprocessing

28 3.3 Wavelet lifting

was introduced that limits the amount of data sharing between processors working on individual
blocks of data. This is similar to the technique we will use. More than in previous generations
of graphics cards, general parallel programming paradigms can now be applied when designing
GPU algorithms.

The three main hardware architectures for the 2D DWT are row-column (RC), line-based
(LB) and block-based (BB), see for example [1, 4, 20, 158], and all three schemes are based on
wavelet lifting. The simplest one is RC, which applies a separate 1D DWT in both the horizontal
and vertical directions for a given number of lifting levels. Although this architecture provides
the simplest control path (thus being the cheapest for a hardware realization), its major disadvan-
tage is the lack of locality due to the use of large off-chip memory (i.e., the image memory), thus
decreasing performance. Contrary to RC, both LB and BB involve a local memory that operates
as a cache, thus increasing bandwidth utilization (throughput). On FPGA architectures, it was
found [4] that the best instruction throughput is obtained by the LB method, followed by the
RC and BB schemes which show comparable performances. As expected, both the LB and BB
schemes have similar bandwidth requirements, which are at least two times smaller than that of
RC. Theoretical results [20, 158] show that this holds as well for ASIC architectures. Thus, LB
is the best choice with respect to overall performance for a hardware implementation.

Unfortunately, a CUDA realization of LB is impossible for all but the shortest wavelets (e.g.,
the Haar wavelet), due to the relatively large cache memory required. For example, the cache
memory for the Deslauriers-Dubuc (13, 7) wavelet should accommodate six rows of the original
image (i.e., 22.5 KB for two-byte word data and HD resolutions), well in excess of the maximum
amount of 16 KB of shared memory available per multi-processor, see Section 3.4.3. As an
efficient implementation of BB requires similar amounts of cache memory, this choice is again
not possible. Thus, the only feasible strategy remains RC. However, we show in Section 3.5 that
even an improved (using cache memory) RC strategy is not optimal for a CUDA implementation.
Nevertheless, our CUDA-specific design can be regarded as a hybrid method between RC and
BB, which also has an optimal access pattern to the slow global memory (see Section 3.4.1).

3.3 Wavelet lifting
As explained in the introduction, lifting is a very flexible framework to construct wavelets with
desired properties. When applied to first generation wavelets, lifting can be considered as a
reorganization of the computations leading to increased speed and more efficient memory usage.
In this section we explain in more detail how this process works. First we discuss the traditional
wavelet transform computation by subband filtering and then outline the idea of wavelet lifting.

3.3.1 Wavelet transform by subband filtering
The main idea of (first generation) wavelet decomposition for finite 1-D signals is to start from
a signal c0 = (c0

0, c
0
1, . . . , c

0
N−1), with N samples (we assume that N is a power of 2). Then we

apply convolution filtering of c0 by a low pass analysis filter H and downsample the result by
a factor of 2 to get an “approximation” signal (or “band”) c1 of length N/2, i.e., half the initial

Accelerating Wavelet Lifting on Graphics Hardware using CUDA 29

length. Similarly, we apply convolution filtering of c0 by a high pass analysis filter G, followed
by downsampling, to get a detail signal (or “band”) d1. Then we continue with c1 and repeat the
same steps, to get further approximation and detail signals c2 and d2 of length N/4. This process
is continued a number of times, say J . Here J is called the number of levels or stages of the
decomposition. The explicit decomposition equations for the individual signal coefficients are:

cj+1
k =

∑
n

hn−2k c
j
n, d

j+1
k =

∑
n

gn−2k c
j
n

where {hn} and {gn} are the coefficients of the filtersH andG. Note that only the approximation
bands are successively filtered, the detail bands are left “as is”.

This process is presented graphically in Fig. 3.1, where the symbol ↓2 (enclosed by a circle)
indicates downsampling by a factor of 2. This means that after the decomposition the initial data

G 2

2H

G 2

2H

G 2

2H...c0 c1

d1

c2

d2

cJ

Jd

Figure 3.1. Structure of the forward wavelet transform with J stages: recursively split a signal
c0 into approximation bands cj and detail bands dj .

vector c0 is represented by one approximation band cJ and J detail bands d1, d2, . . . , dJ . The
total length of these approximation and detail bands is equal to the length of the input signal c0.

Signal reconstruction is performed by the inverse wavelet transform: first upsample the ap-
proximation and detail bands at the coarsest level J , then apply synthesis filters H̃ and G̃ to
these, and add the resulting bands. (In the case of orthonormal filters, such as the Haar basis,
the synthesis filters are essentially equal to the analysis filters.) Again this is done recursively.
This process is presented graphically in Fig. 3.2, where the symbol ↑2 indicates upsampling by a
factor of 2.

2 H
~

2 G
~

+ 2 H
~

2 G
~

+ 2 H
~

2 G
~

+...cJ

Jd

cJ−1

dJ−1

c1

d1

c0

Figure 3.2. Structure of the inverse wavelet transform with J stages: recursively upsample,
filter and add approximation signals cj and detail signals dj .

3.3.2 Wavelet transform by lifting
Lifting consists of four steps: split, predict, update, and scale, see Fig. 3.3 (left).

30 3.3 Wavelet lifting

splitc UP

+

−

K

1/K

j+1
even

j+1

odd

j+1
c

j+1
d

1/K

K

U P

+

−

j
c

j+1

odd

j+1
even

mergej

Figure 3.3. Classical lifting scheme (one stage only). Left part: forward lifting. Right part:
inverse lifting. Here “split” is the trivial wavelet transform, “merge” is the opposite operation,
P is the prediction step, U the update step, and K the scaling factor.

1. Split: this step splits a signal (of even length) into two sets of coefficients, those with even
and those with odd index, indicated by evenj+1 and oddj+1. This is called the lazy wavelet
transform.

2. Predict lifting step: as the even and odd coefficients are correlated, we can predict one
from the other. More specifically, a prediction operator P is applied to the even coefficients
and the result is subtracted from the odd coefficients to get the detail signal dj+1:

dj+1 = oddj+1 − P (evenj+1) (3.1)

3. Update lifting step: similarly, an update operator U is applied to the odd coefficients and
added to the even coefficients to define cj+1:

cj+1 = evenj+1 + U(dj+1) (3.2)

4. Scale: to ensure normalization, the approximation band cj+1 is scaled by a factor of K,
and the detail band dj+1 by a factor of 1/K.

Sometimes the scaling step is omitted; in that case we speak of an unnormalized transform.
A remarkable feature of the lifting technique is that the inverse transform can be found triv-

ially. This is done by “inverting” the wiring diagram, see Fig. 3.3 (right): undo the scaling, undo
the update step (evenj+1 = cj+1−U(dj+1)), undo the predict step (oddj+1 = dj+1+P (evenj+1)),
and merge the even and odd samples. Note that this scheme does not require the operators P and
U to be invertible: nowhere does the inverse of P or U occur, only the roles of addition and
subtraction are interchanged. For a multistage transform the process is repeatedly applied to the
approximation bands, until a desired number of decomposition levels is reached. In the same
way as discussed in section 3.3.1, the total length of the decomposition bands equals that of the
initial signal. As an illustration, we give in Table 3.1 the explicit equations for one stage of the
forward wavelet transform by the (unnormalized) Le Gall (5, 3) filter, both by subband filtering
and lifting (in-place computation). It is easily verified that both schemes give identical results
for the computed approximation and detail coefficients.

Accelerating Wavelet Lifting on Graphics Hardware using CUDA 31

The process above can be extended by including more predict and/or update steps in the
wiring diagram [132]. In fact, any wavelet transform with finite filters can be decomposed into
a sequence of lifting steps [29]. In practice, lifting steps are chosen to improve the decomposi-
tion, for example, by producing a lifted transform with better decorrelation properties or higher
smoothness of the resulting wavelet basis functions.

Wavelet lifting has two properties which are very important for a GPU implementation. First,
it allows a fully in-place calculation of the wavelet transform, so no auxiliary memory is needed.
Second, the lifting scheme can be modified to a transform that maps integers to integers [16].
This is achieved by rounding the result of the P and U functions. This makes the predict and
update operations nonlinear, but this does not affect the invertibility of the lifting transform.
Integer-to-integer wavelet transforms are especially useful when the input data consists of integer
samples. These schemes can avoid quantization, which is an attractive property for lossless data
compression.

For many wavelets of interest, the coefficients of the predict and update steps (before trunca-
tion) are of the form z/2n, with z integer and n a positive integer. In that case one can implement
all lifting steps (apart from normalization) by integer operations: integer addition and multipli-
cation, and integer division by powers of 2 (bit-shifting).

Table 3.1. Forward wavelet transform (one stage only) by the (unnormalized) Le Gall (5, 3)
filter.

Subband fil-
tering

cj+1
k = 1

8
(−cj2k−2 + 2cj2k−1 + 6cj2k + 2cj2k+1 − c

j
2k+2)

dj+1
k = 1

2
(−cj2k + 2cj2k+1 − c

j
2k+2)

Lifting Split: cj+1
k ← cj2k, dj+1

k ← cj2k+1

Predict: dj+1
k ← dj+1

k − 1
2
(cj+1
k + cj+1

k+1)

Update: cj+1
k ← cj+1

k + 1
4
(dj+1
k−1 + dj+1

k)

3.4 Wavelet lifting on GPUs using CUDA

3.4.1 CUDA overview

In recent years, GPUs have become increasingly powerful and more programmable. This combi-
nation has led to the use of the GPU as the main computation device for diverse applications, such
as physics simulations, neural networks, image compression and even database sorting. The GPU
has moved from being used solely for graphical tasks to a fully-fledged parallel co-processor.
Until recently, General Purpose GPU (GPGPU) applications, even though not concerned with

32 3.4 Wavelet lifting on GPUs using CUDA

graphics rendering, did use the rendering paradigm. In the most common scenario, textured
quadrilaterals were rendered to a texture, with a fragment shader performing the computation for
each fragment.

With their G80 series of graphics processors, NVidia introduced a programming environment
called CUDA [70]. It is an API that allows the GPU to be programmed through more traditional
means: a C-like language (with some C++-features such as templates) and compiler. The GPU
programs, now called kernels instead of shaders, are invoked through procedure calls instead
of rendering commands. This allows the programmer to focus on the main program structure,
instead of details like color clamping, vertex coordinates and pixel offsets.

In addition to this generalization, CUDA also adds some features that are missing in shader
languages: random access to memory, fast integer arithmetic, bitwise operations, and shared
memory. The usage of CUDA does not add any overhead, as it is a native interface to the
hardware, and not an abstraction layer.

Execution model

The CUDA execution model is quite different from that of CPUs, and also different from that
of older GPUs. CUDA broadly follows the data-parallel model of computation [70]. The CPU
invokes the GPU by calling a kernel, which is a special C-function.

The lowest level of parallelism is formed by threads. A thread is a single scalar execution
unit, and a large number of threads can run in parallel. The thread can be compared to a fragment
in traditional GPU programming. These threads are organized in blocks, and the threads of each
block can cooperate efficiently by sharing data through fast shared memory. It is also possible to
place synchronization points (barriers) to coordinate operations closely, as these will synchronize
the control flow between all threads within a block. The Single Instruction Multiple Data (SIMD)
aspect of CUDA is that the highest performance is realized if all threads within a warp of 32
consecutive threads take the same execution path. If flow control is used within such a warp, and
the threads take different paths, they have to wait for each other. This is called divergence.

The highest level, which encompasses the entire kernel invocation, is called the grid. The
grid consists of blocks that execute in parallel, if multiprocessors are available, or sequentially if
this condition is not met. A limitation of CUDA is that blocks within a grid cannot communicate
with each other, and this is unlikely to change as independent blocks are a means to scalability.

Memory layout

The CUDA architecture gives access to several kinds of memory, each tuned for a specific pur-
pose. The largest chunk of memory consists of the global memory, also known as device mem-
ory. This memory is linearly addressable, and can be read and written at any position in any order
(random access) from the device. No caching is done in G80, however there is limited caching
in the newest generation (GT200) as part of the shared memory can be configured as automatic
cache. This means that optimizing access patterns is up to the programmer. Global memory is
also used for communication with the CPU, which can read and write using API calls. Registers
are limited per-thread memory locations with very fast access, which are used for local storage.

Accelerating Wavelet Lifting on Graphics Hardware using CUDA 33

Shared memory is a limited per-block chunk of memory which is used for communication be-
tween threads in a block. Variables are marked to be in shared memory using a specifier. Shared
memory can be almost as fast as registers, provided that bank conflicts are avoided. Texture mem-
ory is a special case of device memory which is cached for locality. Textures in CUDA work the
same as in traditional rendering, and support several addressing modes and filtering methods.
Constant memory is cached memory that can be written by the CPU and read by the GPU. Once
a constant is in the constant cache, subsequent reads are as fast as register access.

The device is capable of reading 32-bit, 64-bit, or 128-bit words from global memory into
registers in a single instruction. When access to device memory is properly distributed over
threads, it is compiled into 128-bit load instructions instead of 32-bit load instructions. The
consecutive memory locations must be simultaneously accessed by the threads. This is called
memory access coalescing [70], and it represents one of the most important optimizations in
CUDA. We will confirm the huge difference in memory throughput between coalesced and non-
coalesced access in our results.

3.4.2 Performance considerations for parallel CUDA programs (kernels)

Let us first define some metrics which we use later to analyze our results in Section 3.5.3 below.

Total execution time

Assume that a CUDA kernel performs computations on N data values, and organizes the CUDA
‘execution model’ as follows. Let T denote the number of threads in a block, W the number
of threads in a warp, i.e., W = 32 for G80 GPUs, and B denote the number of thread blocks.
Further, assume that the number of multiprocessors (device specific) is M , and that NVidia’s
occupancy calculator [90] indicates that k blocks can be assigned to one multiprocessor (MP); k
is program specific and represents the total number of threads for which (re)scheduling costs are
zero, i.e., context switching is done with no extra overhead. Given that the amount of resources
per MP is fixed (and small), k simply indicates the occupancy of the resources for the given
kernel. With this notation, the number of blocks assigned to one MP is given by b = B/M . Since
in general k is smaller than b, it follows that the number α of times k blocks are rescheduled is
α =

⌈
B
Mk

⌉
.

Since each MP has 8 stream processors, a warp has 32 threads and there is no overhead
when switching among the warp threads, it follows that each warp thread can execute one (arith-
metic) instruction in four clock cycles. Thus, an estimate of the asymptotic time required by a
CUDA kernel to execute n instructions over all available resources of a GPU, which also includes
scheduling overhead, is given by

Te =
4n

K

T

W
αk ls, (3.3)

where K is the clock frequency and ls is the latency introduced by the scheduler of each MP.
The second component of the total execution time is given by the time Tm required to transfer

N bytes from global memory to fast registers and shared memory. If thread transfers of m bytes

34 3.4 Wavelet lifting on GPUs using CUDA

can be coalesced, given that a memory transaction is done per half-warp, it follows that the
transfer time Tm is

Tm =
2N

W mM
lm, (3.4)

where lm is the latency (in clock cycles) of a memory access. As indicated by NVidia [92],
reported by others [145] and confirmed by us, the latency of a non-cached access can be as large
as 400 − 600 clock cycles. Compared to 24 cycle latency for accessing the shared memory, it
means that transfers from global memory should be minimized. Note that for cached accesses
the latency becomes about 250− 350 cycles.

One way to effectively address the relatively expensive memory-transfer operations is by
using fine-grained thread parallelism. For instance, 24 cycle latency can be hidden by running 6
warps (192 threads) per MP. To hide even larger latencies, the number of threads should be raised
(thus, increasing the degree of parallelism) up to a maximum of 768 threads per MP supported
by the G80 architecture. However, increasing the number of threads while maintaining the size
N of the problem fixed, implies that each thread has to perform less work. In doing so, one
should still recall (i) the paramount importance of coalescing memory transactions and (ii) the
Flops/word ratio, i.e., peak Gflop/s rate divided by global memory bandwidth in words [145],
for a specific GPU. Thus, threads should not execute too few operations nor transfer too little
data, such that memory transfers cannot be coalesced. To summarize, a tradeoff should be found
between increased thread parallelism, suggesting more threads to hide memory-transfer latencies
on the one hand, and on the other, memory coalescing and maintaining a specific Flops/word
ratio, indicating fewer threads.

Let us assume that for a given kernel, one MP has an occupancy of k T threads. Further, if the
kernel has a ratio r ∈ (0, 1) of arithmetic to arithmetic-and-memory-transfer instructions, and
assuming a round-robin scheduling policy, then the reduction of memory-transfer latency due to
latency hiding is

lh =
∑
i≥0

⌊
k T

8
ri
⌋
. (3.5)

For example, assume that r = 0.5, i.e., there are as many arithmetic instructions (flops) as
memory transfers, and assume that k T = 768, i.e., each MP is fully occupied. The scheduler
starts by assigning 8 threads to a MP. Since r = 0.5 chances are that 4 threads execute each a
memory transfer instruction while the others execute one arithmetic operation. After one cycle,
those 4 threads executing memory transfers are still asleep for at least 350 cycles, while the others
just finished executing the flop and are put to sleep too. The scheduler assigns now another 8
threads, which again can execute either a memory transfer or a flop, with the same probability,
and repeats the whole process. Counting the number of cycles in which 4 threads executed
flops, reveals a number of 190 cycles, so that the latency is decreased in this way to just lm =
350 − 190 = 160 cycles. In the general case, for a given r and occupancy, we postulate that
formula (3.5) applies.

The remaining component of the total GPU time for a kernel is given by the synchronization
time. To estimate this component, we proceed as follows. Assume all active threads (i.e., k T ≤
768) are about to execute a flop, after which they have to wait on a synchronization point (i.e.,

Accelerating Wavelet Lifting on Graphics Hardware using CUDA 35

on a barrier). Then, assuming again a round-robin scheduling policy and reasoning similar as for
Eq. (3.3), the idle time spent waiting on the barrier is

Ts =
Te
n

=
4

K

T

W
αk ls. (3.6)

This agrees with NVidia’s remark that, if within a warp thread divergence is minimal, then wait-
ing on a synchronization barrier requires only four cycles [92]. Note that the expression for Ts
from Eq. (3.6) represents the minimum synchronization time, as threads were assumed to exe-
cute (fast) flops. In the worst case scenario – at least one active thread has just started before the
synchronization point, a slow global-memory transaction – this estimate has to be multiplied by
a factor of about 500/4 = 125 (the latency of a non-cached access divided by 4 threads).

To summarize, we estimate the total execution time Tt as Tt = Te + Tm + Ts.

Instruction throughput

Assuming that a CUDA kernel performs n flops in a number c of cycles, then the estimate of
the asymptotic Gflop/s rate is Ge = 32M nK

c
, whereas the measured Gflop/s rate is Gm = nN

Tt
;

here K is the clock rate and Tt the (measured) total execution time. For the 8800 GTX GPU the
peak instruction throughput using register-to-register MAD instructions is about 338 Gflop/s and
drops to 230 Gflop/s when using transfers in/from shared memory [145].

Memory bandwidth

Another factor which should be taken into account when developing CUDA kernels is the mem-
ory bandwidth,Mb = N

Tt
. For example, parallel reduction has very low arithmetic intensity, i.e., 1

flop per loaded element, which makes it bandwidth-optimal. Thus, when implementing a parallel
reduction in CUDA, one should strive for attaining peak bandwidth. On the contrary, if the prob-
lem at hand is matrix multiplication (a trivial parallel computation, with little synchronization
overhead), one should optimize for peak throughput. For the 8800 GTX GPU the pin-bandwidth
is 86 GB/s.

Complexity

With coalesced accesses the number of bytes retrieved with one memory request (and thus one
latency) is maximized. In particular, coalescing reduces lm (through lh from Eq. 3.5) by a factor
of about two. Hence one can safely assume that lm/(2W)→ 0. It follows that the total execution
time satisfies

Tt ∼ 4n
N

W M D
, (3.7)

where n is the number of instructions of a given CUDA kernel, N is the problem size, D is the
problem size per thread, and ∼ means that both left and right-hand side quantities have the same
order of magnitude.

36 3.4 Wavelet lifting on GPUs using CUDA

The efficiency of a parallel algorithm is defined as

E =
TS
C

=
TS
M Tt

, (3.8)

where TS is the execution time of the (fastest) sequential algorithm, and C = M Tt is the cost
of the parallel algorithm. A parallel algorithm is called cost efficient (or cost optimal) if its cost
is proportional to TS . Let us assume TS ∼ nsN , where ns is the number of instructions for
computing one data element and N denotes the problem size. Then, the efficiency becomes

E ∼ nsW D

4n
. (3.9)

Thus, according to our metric above, for a given problem, any CUDA kernel which (i) uses
coalesced memory transfers (i.e., lm/(2W) → 0 is enforced), (ii) avoids thread divergence (so
that our Ts estimate from Eq. 3.6 applies), (iii) minimizes transfers from global memory, and (iv)
has an instruction count n proportional to (nsW D) is cost efficient. Of course, the smaller n is,
the more efficient the kernel becomes.

3.4.3 Parallel wavelet lifting
Earlier parallel methods for wavelet lifting [60] assumed an MPI architecture with processors that
have their own memory space. However, the CUDA architecture is different. Each processor has
its own shared memory area of 16 KB, which is not enough to store a significant part of the
dataset. As explained above, each processor is allocated a number of threads that run in parallel
and can synchronize. The processors have no way to synchronize with each other, beyond their
invocation by the host.

This means that data parallelism has to be used, and moreover, the dataset has to be split
into parts that can be processed as independently as possible, so that each chunk of data can be
allocated to a processor. For wavelet lifting, except for the Haar [132] transform, this task is not
trivial, as the implied data re-use in lifting also requires the coefficients just outside the delimited
block to be updated. This could be solved by duplicating part of the data in each processor.
Wavelet bases with a large support will however need more data duplication. If we want to do a
multilevel transform, each level of lifting doubles the amount of duplicated work and data. With
the limited amount of shared memory available in CUDA, this is not a feasible solution.

As kernel invocations introduce some overhead each time, we should also try to do as much
work within one kernel as possible, so that the occupancy of the GPU is maximized. The sliding
window approach enables us (in the case of separable wavelets) to keep intermediate results
longer in shared memory, instead of being written to global memory.

3.4.4 Separable wavelets
For separable wavelet bases in 2-D it is possible to split the operation into a horizontal and a
vertical filtering step. For each filter level, a horizontal pass performs a 1-D transform on each

Accelerating Wavelet Lifting on Graphics Hardware using CUDA 37

Figure 3.4. Horizontal lifting step. h thread blocks are created, each containing T threads;
each thread performs computations on N/(hT) = w/T data. Black quads illustrate input for
the thread with id 0. Here w and h are the the dimensions of the input and N = w · h.

row, while a vertical pass computes a 1-D transform on each column. This lends itself to easy
parallelization: each row can be handled in parallel during the horizontal pass, and then each
column can be handled in parallel during the vertical pass. In CUDA this implies the use of
two kernels, one for each pass. The simple solution would be to have each block process a row
with the horizontal kernel, while in the vertical step each block processes a column. Each thread
within these blocks can then filter an element. We will discuss better, specific algorithms for both
passes in the upcoming subsections.

3.4.5 Horizontal pass
The simple approach mentioned in the previous subsection works very well for the horizontal
pass. Each block starts by reading a line into shared memory using so-called coalesced reads
from device memory, executes the lifting steps in-place in fast shared memory, and writes back
the result using coalesced writes. This amounts to the following steps:

1. Read a row from device memory into shared memory.

2. Duplicate border elements (implement boundary condition).

3. Do a 1-D lifting step on the elements in shared memory.

4. Repeat steps 2 and 3 for each lifting step of the transform.

5. Write back the row to device memory.

As each step is dependent on the output in shared memory of the previous step, the threads within
the block have to be synchronized every time before the next step can start. This ensures that the
previous step did finish and wrote back its work. Fig. 3.4 shows the configuration of the CUDA
execution model for the horizontal step. Without loss of generality, assume that N = w · h

38 3.4 Wavelet lifting on GPUs using CUDA

x0(0) x0(1) x0(3)x0(2)

x1(0)

x1(0) x1(1)y1(0) y1(1)

x1(1) y1(0) y1(1)

Figure 3.5. Wavelet lifting for a row of data, representing the result in interleaved (top) and
de-interleaved (bottom) form. Here xi and yi are the approximation and detail bands at level i.

integers are lifted at level i. Note that, if the lifting level i = 0, then w and h are the dimensions
of the input image. For this step, a number B = h of thread blocks are used, with T threads
per block. Thus, each thread performs computations on w/T integers. In the figure, black
quads illustrate locations which are processed by the thread with id 0. Neither the number nor
the positions of these quads need to correspond to the actual number and positions of locations
where computations are performed, i.e., they are solely used for illustration purposes.

By reorganizing the coefficients [18] we can achieve higher efficiency for successive levels
after the first transformation. If the approximation and detail coefficients are written back in
interleaved form, as is usually the case with wavelet lifting, the reading step for the next level
will have to read the approximation coefficients of the previous level in interleaved form. These
reads cannot be coalesced, resulting in low memory performance. To still be able to coalesce,
one writes the approximation and detail coefficients back to separate halves of the memory. This
will result in a somewhat different memory layout for subbands (Fig. 3.5) but this could be
reorganized if needed. Many compression algorithms require the coefficients stored per subband
anyhow, in which case this organization is advantageous.

Figure 3.6. Vertical lifting step. w/S blocks are created, each containing T = Vx · Vy threads;
each thread performs computations on S/Vx × h/Vy data. Black quads illustrate input for the
thread with id (0, 0), whereas vertical lines depict boundaries between image-high slabs.

Accelerating Wavelet Lifting on Graphics Hardware using CUDA 39

3.4.6 Vertical pass

The vertical pass is more involved. Of course it is possible to use the same strategy as for the
horizontal pass, substituting rows for columns. But this is far from efficient. Reading a column
from the data would amount to reading one value per row. As only consecutive reads can be
coalesced into one read, these are all performed individually. The processing steps would be the
same as for the horizontal pass, after which writing back is again very inefficient.

We can gain a 10 times speedup by using coalesced memory access. Instead of having each
block process a column, we make each block process multiple columns by dividing the image
into vertical “slabs”, see Fig. 3.6. Within a block, threads are organized into a 2D grid of size
Vx × Vy , instead of a 1D one, as in the horizontal step. The number S of columns in each slab
is a multiple of Vx such that the resulting number of slab rows can still be coalesced, and has the
height of the image. Each thread block processes one of the slabs, i.e., S/Vx× h/Vy data. Using
this organization, a thread can do a coalesced read from each row within a slab, do filtering in
shared memory, and do a coalesced write to each slab row.

Another problem arises here, namely that the shared memory in CUDA is not large enough
to store all columns for any sizable dataset. This means that we cannot read and process the
entire slab at once. The solution that we found is to use a sliding window within each slab,
see Fig. 3.7(a). This window needs to have dimensions so that each thread in the block can
transform a signal element, and additional space to make sure that the support of the wavelet
does not exceed the top or bottom of the window. To determine the size of the window needed,
how much to advance, and at which offset to start, we need to look at the support of each of the
lifting steps.

In Fig. 3.7(a), height is the height of the working area. As each step updates either odd
or even rows within a slab, each row of threads updates one row in each lifting step. Therefore,
a good choice is to set it to two times the number of threads in the vertical direction. Similarly,
width should be a multiple of the number of threads in the horizontal direction, and the size of
a row should be a multiple of the coalescable size. In the figure, rows in the top area have been
fully computed, while rows in the overlap area still need to go through at least one lifting step.
The rows in the working area need to go through all lifting steps, whilst rows in the bottom area
are untouched except as border extension. The sizes of overlap, top and bottom depend on
the chosen wavelet. We will elaborate on this later.

The algorithm

Algorithm 3.1 shows the steps for the vertical lifting pass. Three basic operations are used: read
copies rows from device memory into shared memory, write copies rows from shared memory
back to device memory, and copy transfers rows from shared memory to another place in shared
memory. The shared memory window is used as a cache, and to manage this we keep a read and
a write pointer. The read pointer inrow indicates where to read from, the write pointer outrow
indicates where to write back. After reading, we advance the read pointer, after writing we
advance the write pointer. Both are initialized to the top of the slab at the beginning of the kernel
(line 1 and 2 of Algorithm 3.1).

40 3.4 Wavelet lifting on GPUs using CUDA

Bottom boundary

Top boundary

Overlap

Working area

width

top

overlap

bottom

height
Work area

Top

Bottom

Overlap

Top

Bottom

Work area

Overlap

(a) (b)

Figure 3.7. (a): The sliding window used during the vertical pass for separable wavelets. (b):
Advancing the sliding window: the next window is aligned at the bottom of the previous one,
taking the overlap area into account.

The first block has to be handled differently because we need to take the boundary conditions
into account. So initially, rows are copied from the beginning of the slab to shared memory, filling
it from a certain offset to the end (line 5). Next we apply a vertical wavelet lifting transform
(transformTop, line 7) to the rows in shared memory (it may be required to leave some rows at
the end untouched for some of the lifting steps, depending on their support; we will elaborate on
this in the next section). After this we write back the fully transformed rows from shared memory
to device memory (line 8). Then, for each block, the bottom part of the shared memory is copied
to the top part (Fig. 3.7(b)), in order to align the next window at the bottom of the previous one,
taking the overlap area into account (line 11). The rest of the shared memory is filled again by
copying rows from the current read pointer of the slab (line 12).

Further, we apply a vertical wavelet lifting transform (transformBlock, line 14) to the rows
in the working area. This does not need to take boundary conditions into account as the top
and bottom are handled specifically with transformTop and transformBottom. Then, height
rows are copied from shared memory row top to the current write pointer (line 15). This process
is repeated until we have written back the entire slab, except for the last leftover part. When
finishing up (line 20), we have to be careful to satisfy the bottom boundary condition.

Example

We will discuss the Deslauriers-Dubuc (13, 7) wavelet as an example [31]. This example was
chosen because it represents a non-trivial, but still compact enough case of the algorithm, that we
can go through step by step. The filter weights for the two lifting steps of this transform are shown
in Table 3.2. Both the prediction and update steps depend on two coefficients before and after the
signal element to be computed. Fig. 3.8 shows an example of the performed computations. For
this example, we choose top = 3, overlap = 2, height = 8 and bottom = 3. This is a
toy example, as in practice height will be much larger when compared to the other parameters.

Starting with the first window at the start of the dataset, step 1 (first column), the odd rows

Accelerating Wavelet Lifting on Graphics Hardware using CUDA 41

Algorithm 3.1 The sliding window algorithm for the vertical wavelet lifting transform (see sec-
tion 3.4.6). Here top, overlap, height, bottom are the length parameters of the sliding
window (see Fig. 3.7), and h is the number of rows of the dataset. The pointer inrow indicates
where to read from, the pointer outrow indicates where to write back.

1: inrow← 0 {initialize read pointer}
2: outrow← 0 {initialize write pointer}
3: windows← (h− height− bottom)/height {number of times window fits in slab}
4: leftover← (h− height− bottom)%height {remainder}
5: read(height+ bottom from row inrow to row top+ overlap) {copy from global to shared

memory}
6: inrow← inrow + height + bottom {advance read pointer}
7: transformTop() {apply vertical wavelet lifting to rows in shared memory}
8: write(height− overlap from row top+ overlap to row outrow) {write transformed rows

back to global memory}
9: outrow← outrow + height− overlap {advance write pointer}

10: for i = 1 to windows do {advance sliding window through slab and repeat above steps}
11: copy(top + overlap + bottom from row height to row 0)
12: read(height from row inrow to row top + overlap + bottom)
13: inrow← inrow + height
14: transformBlock() {vertical wavelet lifting}
15: write(height from row top to row outrow)
16: outrow← outrow + height
17: end for
18: copy(top + overlap + bottom from row height to row 0)
19: read(leftover from row inrow to row top + overlap + bottom)
20: transformBottom() {satisfy bottom boundary condition}
21: write(leftover + overlap + bottom from row top to row outrow)

of the working area (offset 1, 3, 5, 7) are lifted. The lifted rows are marked with a cross, and the
rows they depend on are marked with a bullet. In step 2 (second column) the even rows are lifted.
Again, the lifted rows are marked with a cross, and the dependencies are marked with a bullet.
As the second step is dependent on the first, we cannot lift any rows that are dependent on values
that were not yet calculated in the last step. In Fig. 3.8, this would be the case for row 6: this row
requires data in rows 3, 5, 7 and 9, but row 9 is not yet available.

Here the overlap region of rows comes in. As row 6 of the window is not yet fully trans-
formed, we cannot write it back to device memory yet. So we write everything up to this row
back, copy the overlapping area to the top, and proceed with the second window. In the second
window, we again start with step 1. The odd rows are lifted, except for the first one (offset 7)
which was already computed, i.e., rows 9, 11, 13 and 15 are lifted. Then, in step 2 we start at
row 6, i.e., three rows before the first step (row 9), but we do lift four rows.

After this we can write the top 8 rows back to device memory, and begin with the next window
in exactly the same way. We repeat this until the entire dataset is transformed. By letting the
second lifting step lag behind the first, one can do the same number of operations in each, making

42 3.4 Wavelet lifting on GPUs using CUDA

Table 3.2. Filter weights of the two lifting steps for the Deslauriers-Dubuc (13, 7) [31] wavelet.
The current element being updated is marked with •.

Offset Prediction Update

-3 − 1
16

-2 1
16

-1 9
16

0 − 9
16

•
1 • 9

16

2 − 9
16

3 − 1
16

4 1
16

optimal use of the thread matrix (which should have a height of 4 in this case).
All separable wavelet lifting transforms, even those with more than two lifting steps, or with

differently sized supports, can be computed in the same way. The transform can be inverted by
running the steps in reverse order, and flipping the signs of the filter weights.

3.4.7 3-D and higher dimensions

The reason that the horizontal and vertical passes are asymmetric is because of the coalescing
requirement for reads and writes. In the horizontal case, an entire line of the data-set could be
processed at a time. In the vertical case the data-set was horizontally split into image-high slabs.
This allowed the slabs to be treated independently and processed using a sliding window algo-
rithm that uses coalesced reads and writes to access lines of the slab. A consecutive, horizontal
span of values is stored at consecutive addresses in memory. This does not extend similarly to
vertical spans of values, these will be separated by an offset at least the width of the image,
known as the row pitch. As a slab is a rectangular region of the image of a certain width that
spans the height of the image, it will be represented in memory by an array of consecutive spans
of values, each separated by the row pitch.

When adding an extra dimension, let us say z, the volume is stored as an array of slices. In a
span of values oriented along this dimension, each value is separated in memory by an offset that
we call the slice pitch. By orienting the slabs in the xz-plane instead of the xy-plane, and thus
using the slice pitch instead of the row pitch as offset between consecutive spans of values, the
same algorithm as in the vertical case can be used to do a lifting transform along this dimension.
To verify our claim, we implemented the method just described, and report results in section
3.5.2. More than three dimensions can be handled similarly, by orienting the slabs in the Dix
plane (where Di is dimension i) and using the pitch in that dimension instead of the row pitch.

Accelerating Wavelet Lifting on Graphics Hardware using CUDA 43

0
1
2
3
4
5
6
7
8
9
10

Updated
Dependency

7
8
9
10
11
12
13
14
15
16

6

17
18

5
4
3

Step Step

O
ff

se
t

O
ff

se
t

Overlap

Overlap

Bottom

Top

Bottom

1 2 1 2

First window Subsequent windows

Figure 3.8. The vertical pass for the Deslauriers-Dubuc (13, 7) [31] wavelet. Lifted rows in
each step are marked with a cross, dependent rows are marked with a bullet.

3.5 Results
We first present a broad collection of experimental results. This is followed by a performance
analysis which provides insight in the results obtained, and also shows that the design choices
we made closely match our theoretical predictions.

The benchmarks in this section were run on a machine with a AMD Athlon 64 X2 Dual
Core Processor 5200+ and a NVidia GeForce 8800 GTX 768MB graphics card, using CUDA
version 2.1 for the CUDA programs. All reported timings exclude the time needed for reading
and writing images or volumes from and to disc (both for the CPU and GPU versions).

3.5.1 Wavelet filters used for benchmarking
The wavelet filters that we used in our benchmarks are integer-to-integer versions (unnormal-
ized) of the Haar [132], Deslauriers-Dubuc (9, 7) [31], Deslauriers-Dubuc (13, 7) [31], Le Gall
(5, 3) [69], (integer approximation of) Daubechies (9, 7) [28] and the Fidelity wavelet – a custom
wavelet with a large support [9]. In the filter naming convention (m,n), m refers to the length of
the analysis low-pass and n to the analysis high-pass filters in the conventional wavelet subband
filtering model, in which a convolution is applied before subsampling. They do not reflect the

44 3.5 Results

length of the filters used in the lifting steps, which operate in the subsampled domain. The im-
plementation only involves integer addition and multiplication, and integer division by powers
of 2 (bit-shifting), cf. section 3.3.2. The coefficients of the lifting filters can be found in [9].

Table 3.3. Performance of our CUDA GPU implementation of 2D wavelet lifting (column
5) compared to an optimized CPU implementation (column 2) and a CUDA GPU transpose
method (column 3, see text), computing a three-level decomposition of a 1920 × 1080 image
for both analysis and synthesis steps.

Wavelet (analysis) CPU (ms) GPU
transpose
(ms)

Speed-up GPU our
method
(ms)

Speed-up

Haar 10.31 5.58 1.9 0.80 12.9
Deslauriers-Dubuc (9, 7) 16.84 6.01 2.8 1.50 11.2
Le Gall (5, 3) 14.03 5.89 2.4 1.34 10.5
Deslauriers-Dubuc (13, 7) 19.52 6.08 3.2 1.62 12.0
Daubechies (9, 7) 22.66 6.54 3.5 2.05 11.1
Fidelity 28.82 6.45 4.5 2.11 13.7

Wavelet (synthesis) CPU (ms) GPU
transpose
(ms)

Speed-up GPU our
method
(ms)

Speed-up

Haar 9.11 6.33 1.4 0.83 11.0
Deslauriers-Dubuc (9, 7) 15.93 6.40 2.5 1.45 11.0
Le Gall (5, 3) 13.02 6.29 2.1 1.28 10.2
Deslauriers-Dubuc (13, 7) 18.22 6.48 2.8 1.55 11.8
Daubechies (9, 7) 21.73 7.03 3.1 2.04 10.7
Fidelity 27.21 6.86 4.0 2.18 12.5

3.5.2 Experimental results and comparison to other methods

Comparison of 2D wavelet lifting, GPU versus CPU

First, we emphasize that the accuracies of the GPU and CPU implementations are the same.
Because only integer operations are used (cf. section 3.5.1) the results are identical.

We compared the speed of performing various wavelet transforms using our optimized GPU
implementation, to an optimized wavelet lifting implementation on the CPU, called Schrödinger [9].
The latter implementation makes use of vectorization using the MMX and SSE instruction set
extensions, thus can be considered close to the maximum that can be achieved on the CPU with
one core.

Accelerating Wavelet Lifting on Graphics Hardware using CUDA 45

Table 3.3 shows the timings of both our GPU accelerated implementation and the Schrödinger
implementation when computing a three-level transform with various wavelets of a 1920× 1080
image consisting of 16-bit samples. As it is better from an optimization point of view to have a
tailored kernel for each wavelet type, than to have a single kernel that handles everything, we used
a code generation approach to create specific kernels for the horizontal and vertical pass for each
of the wavelets. Both the analysis (forward) and synthesis (inverse) transform are benchmarked.
We observe that speedups by a factor of 10 to 14 are reached, depending on the type of wavelet
and the direction of the transform. The speedup factor appears to be roughly proportional to the
length of the filters. The Haar wavelet is an exception, since the overlap problem does not arise
in this case (the filter length being just 2), which explains the larger speedup factor.

To demonstrate the importance of coalesced memory access in CUDA, we also performed
timings using a trivial CUDA implementation of the Haar wavelet, that uses the same algorithm
for the vertical step as for the horizontal step, instead of our sliding window algorithm. Note that
this method can be considered an improved (using cache) row-column, hardware-based strategy,
see Section 3.2. Whilst our algorithm processes an image in 0.80 milliseconds, the trivial al-
gorithm takes 15.23, which is almost 20 times slower. This is even slower than performing the
transformation on the CPU.

Note that the timings in Table 3.3 do not include the time required to copy the data from (2.4
ms) or to (1.6 ms) the GPU.

Vertical step via transpose method

Another method that we have benchmarked consists in reusing the horizontal step as vertical step
by using a “transpose” method. Here, the matrix of wavelet coefficients is transposed after the
horizontal pass, the algorithm for the horizontal step is applied, and the results are transposed
back. The results are shown in columns 3 and 4 of Table 3.3. Even though the transpose op-
eration in CUDA is efficient and coalescable, and this approach is much easier to implement,
the additional passes over the data reduce performance quite severely. Another drawback of
this method is that transposition cannot be done in-place efficiently (in the general case), which
doubles the required memory, so that the advantage of using the lifting strategy is lost.

Comparison of horizontal and vertical steps

Table 3.4 shows separate benchmarks for the horizontal and vertical steps, using various wavelet
filters. From these results one can conclude that the vertical pass is not significantly slower (and
in some cases even faster) than the horizontal pass, even though it performs more elaborate cache
management, see Algorithm 3.1.

Timings for 16-bit versus 32-bit integers

We also benchmarked an implementation that uses 32-bit integers, see Table 3.5. For small
wavelets like Haar, the timings for 16- and 32-bit differ by a factor of around 1.5, whereas for
large wavelets the two are quite close. This is probably because the smaller wavelet transforms

46 3.5 Results

Table 3.4. Performance of our GPU implementation on 16-bit integers, separate timings of
horizontal and vertical steps on a one-level decomposition of a 1920× 1080 image.

Wavelet (analysis) Horizontal (ms) Vertical (ms)

Haar 0.26 0.19
Deslauriers-Dubuc (9, 7) 0.44 0.42
Le Gall (5, 3) 0.39 0.34
Deslauriers-Dubuc (13, 7) 0.47 0.47
Daubechies (9, 7) 0.62 0.62
Fidelity 0.63 0.76

Wavelet (synthesis) Horizontal (ms) Vertical (ms)

Haar 0.29 0.19
Deslauriers-Dubuc (9, 7) 0.39 0.44
Le Gall (5, 3) 0.35 0.36
Deslauriers-Dubuc (13, 7) 0.42 0.48
Daubechies (9, 7) 0.58 0.79
Fidelity 0.59 0.64

Table 3.5. Performance of our GPU implementation on 16 versus 32-bit integers (3 level trans-
form, 1920× 1080 image).

Wavelet (analysis) 16-bit (ms) 32-bit (ms)

Haar 0.80 1.09
Deslauriers-Dubuc (9, 7) 1.50 1.64
Le Gall (5, 3) 1.34 1.45
Deslauriers-Dubuc (13, 7) 1.62 1.75
Daubechies (9, 7) 2.05 2.13
Fidelity 2.11 2.72

Wavelet (synthesis) 16-bit (ms) 32-bit (ms)

Haar 0.83 1.15
Deslauriers-Dubuc (9, 7) 1.45 1.81
Le Gall (5, 3) 1.28 1.66
Deslauriers-Dubuc (13, 7) 1.55 1.90
Daubechies (9, 7) 2.04 2.35
Fidelity 2.18 2.80

Accelerating Wavelet Lifting on Graphics Hardware using CUDA 47

256 512 1024 2048 4096
Image size in both dimensions (pixels)

0.1

1.0

10.0

100.0

1000.0

T
im

e
 (

m
s)

CPU
Tenllado
Our method

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Image size in both dimensions (pixels)

0

5

10

15

20

25

30

35

40

45

T
im

e
 (

m
s)

Tenllado
Our method

Figure 3.9. Computation time versus image size for various lifting implementations; 3-level
Daubechies (9, 7) forward transform. Top: the Schrödinger CPU implementation, Tenllado
et al. [135] and our CUDA accelerated method in a log-log plot. Bottom: just the two GPU
methods in a linear plot.

48 3.5 Results

are more memory-bound and the larger wavelets are more compute-bound, hence the increased
memory bandwidth does not affect the performance significantly.

Comparison of 2D wavelet lifting on GPU, CUDA versus fragment shaders

We also implemented the algorithm of Tenllado et al. [135] for wavelet lifting using conven-
tional fragment shaders and performed timings on the same hardware. A three-level Daubechies
(9, 7) forward wavelet transform was applied to a 1920× 1080 image, which took 5.99 millisec-
onds. In comparison, our CUDA-based implementation (see Table 3.3) does the same in 2.05
milliseconds, which is about 2.9 times faster. This speedup probably occurs because our method
effectively makes use of CUDA shared memory to compute intermediate lifting steps, conserv-
ing GPU memory bandwidth, which is the bottleneck in the Tenllado method. Another drawback
that we noticed while implementing the method is that an important advantage of wavelet lifting,
i.e., that it can be done in place, appears to have been ignored. This is possibly due to an OpenGL
restriction by which it is not allowed to use the source buffer as destination, the same result is
achieved by alternating between two halves of a buffer, resulting in a doubling of memory usage.

Figure 3.9 further compares the performance of the Schrödinger CPU implementation, Ten-
llado et al. [135] and our CUDA accelerated method. A three-level Daubechies (9, 7) forward
wavelet decomposition was applied to images of different sizes, and the computation time was
plotted versus image size in a log-log graph. This shows that our method is faster by a constant
factor, regardless of the image size. Even for smaller images, our CUDA accelerated implemen-
tation is faster than the CPU implementation, whereas the shader-based method of Tenllado is
slower for 256×256 images, due to OpenGL rendering and state set-up overhead. CUDA kernel
calls are relatively lightweight, so this problem does not arise in our approach. For larger images
the overhead averages out, but as the method is less bandwidth efficient it remains behind by a
significant factor.

Comparison of lifting versus convolution in CUDA

Additionally, we compared our method to a convolution-based wavelet transform implemented in
CUDA, one that uses shared memory to perform the convolution plus downsampling (analysis),
or upsampling plus convolution (synthesis) efficiently. On a 1920 × 1080 image, for a three-
level transform with the Daubechies (9, 7) wavelet, the following timings are observed: 3.4
ms for analysis and 5.0 ms for synthesis. The analysis is faster than the synthesis because it
requires less computations – only half of the coefficients have to be computed, while the other
half is discarded in the downsampling step. Compared to the 2.0 ms of our own method for both
transforms, this is significantly slower. This matches the expectation that a speedup factor of 1.5
to 2 can be achieved when using lifting [132].

Timings for 3D wavelet lifting in CUDA

Timings for the 3-D approach outlined in Section 3.4.7 are given in Table 3.6. A three-level
transform was applied to a 5123 volume, using various wavelets. The timings are compared to

Accelerating Wavelet Lifting on Graphics Hardware using CUDA 49

Table 3.6. Performance of our GPU lifting implementation in 3D, compared to an optimized
CPU implementation; a three-level decomposition for both analysis and synthesis is performed,
on a 5123 volume.

Wavelet (analysis) CPU (ms) GPU (ms) Speed-up

Haar 1037.4 147.2 7.0
Deslauriers-Dubuc (9, 7) 2333.1 192.0 12.2
Le Gall (5, 3) 1636.2 179.3 9.1
Deslauriers-Dubuc (13, 7) 3056.1 200.5 15.2
Daubechies (9, 7) 3041.3 234.6 13.0
Fidelity 5918.4 239.2 24.7

Wavelet (synthesis) CPU (ms) GPU (ms) Speed-up

Haar 926.5 150.9 6.1
Deslauriers-Dubuc (9, 7) 2289.9 184.7 12.4
Le Gall (5, 3) 1631.1 173.7 9.4
Deslauriers-Dubuc (13, 7) 2983.9 192.1 15.5
Daubechies (9, 7) 2943.5 232.0 12.7
Fidelity 5830.7 230.9 25.3

the same CPU implementation as before, extended to 3-D. The numbers show that the speed-ups
that can be achieved for higher dimensional transforms are considerable, especially for the larger
wavelets such as Deslauriers-Dubuc (13, 7) or Fidelity.

Summary of experimental results

Compared to an optimized CPU implementation, we have seen performance gains of up to nearly
14 times for 2D and up to 25 times for 3D images by using our CUDA based wavelet lifting
method. Especially for the larger wavelets, the gains are substantial. When compared to the
trivial transpose-based method our method came out about two times faster over the entire spec-
trum of wavelets. When regarding computation time versus image size, our GPU based wavelet
lifting method was measured to be the fastest of three methods for all image sizes, with the factor
mostly independent of the image size.

3.5.3 Performance Analysis
We analyze the performance of our GPU implementation, according to the metrics from Sec-
tion 3.4.2, for performing one lifting (analysis) step. Without loss of generality, we discuss the
Deslauriers-Dubuc (13, 7) wavelet, cf. Section 3.4.6. Our systematic approach consists first in
explaining the total execution time, throughput and bandwidth of our method, and then in dis-
cussing the design decisions we made. The overhead of data transfer between CPU and GPU

50 3.5 Results

was excluded, since the wavelet transform is usually part of a larger processing pipeline (such as
a video codec), of which multiple steps can be carried out on the GPU.

Horizontal step

The size of the input data set is N = w · h = 1920 · 1080 two-byte words. We set T = 256
threads per block, and given the number of registers and the size of the shared memory used by
our kernel, NVidia’s occupancy calculator indicates that k = 3 blocks are active per MP, such
that each MP is fully occupied (i.e., k T = 768 threads will be scheduled); the number of thread
blocks for the horizontal step is B = 1080. Given that the 8800 GTX GPU has M = 16 MPs
it follows that α = 23, see Section 3.4.2. Further, we used decuda (a disassembler of GPU
binaries; see http://wiki.github.com/laanwj/decuda) to count the number and type of instructions
performed. After unrolling the loops, we found that the kernel has 309 instructions, 182 of
which are arithmetic operations in local memory and registers, 15 instructions are half-width
(i.e., instruction code is 32-bit wide), 82 are memory transfers and 30 are other instructions
(mostly type conversions). Assuming that half-width instructions have a throughput of 2 cycles,
and others take 4 cycles per warp, and since the clock rate of this device is K = 1.35 GHz, the
asymptotic execution time is Te = 0.48 ms. Here we assumed that the extra overhead due to
rescheduling is negligible, as was confirmed by our experiments.

For the transfer time, we first computed the ratio of arithmetic to arithmetic-and-transfers
instructions, which is r = 0.67. Thus, from Eq. (3.5) it follows that as many as 301 cycles can be
spared due to latency hiding. As the amount of shared memory used by the kernel is relatively
small (i.e., 3 × 3.75 KB used out of 16 KB per MP) and the size of the L2 cache is about 12
KB per MP [145], we can safely assume that the latency of a global memory access is about 350
cycles, so that lm = 49 cycles. Sincem = 4 (i.e., two two-byte words are coalesced), the transfer
time is Tm = 0.15 ms. Note that as two MPs also share a small but faster L1 cache of 1.5 KB, the
real transfer time could be even smaller than our estimate. Moreover, as we included also in our
counting shared-memory transfers (whose latency is at least 10 times smaller than that of global
memory), the real transfer time should be much smaller than its estimate.

According to our discussion in Section 3.4.5, five synchronization points are needed to ensure
data consistency between individual steps. For one barrier, in the ideal case, the estimated waiting
time is Ts = 1.65 µs, thus the total time is about 8.25 µs. In the worst case Ts = 0.2 ms, so that
the total time can be as large as 1 ms.

To summarize, the estimated execution time for the horizontal step is about Tt = 0.63 ms, ne-
glecting the synchronization time. Comparing this result with the measured one from Table 3.4,
one sees that the estimated total time is 0.16 ms larger than the measured one. Probably this is
due to L1 caching contributing to a further decrease of Tm. However, essential is that the to-
tal time is dominated by the execution time, indicating a compute-bound kernel. As the timing
remains essentially the same (cf. Tables 3.3 and 3.5) when switching from two-byte words to
four-byte words data, this further strengthens our finding.

The measured throughput is Gm = 98 Gflop/s, whereas the estimated one is Ge = 104
Gflop/s, indicating on average an instruction throughput of about 100 Gflop/s. Note that with
some abuse of terminology we refer to flops, when in fact we mean arithmetic instructions on in-

http://wiki.github.com/laanwj/decuda

Accelerating Wavelet Lifting on Graphics Hardware using CUDA 51

tegers. The measured bandwidth is Mb = 8.8 GB/s, i.e., we are quite far from the pin-bandwidth
(86 GB/s) of the GPU, thus one can conclude again that our kernel is indeed compute-bound. This
conclusion is further supported by the fact that the flop-to-byte ratio of the GPU is 5, while in
our case this ratio is about 11. The fact that the kernel does not achieve the maximum throughput
(using shared memory) of about 230 Gflop/s is most likely due to the fact that the synchronization
time cannot simply be neglected and seems to play an important role in the overall performance.

Let us now focus on the design choices we have made. Using T = 256 threads per block
amounts to optimal time slicing (latency hiding), see discussion above and in Section 3.4.2,
while we are still able to coalesce memory transfers. To decrease the synchronization time,
lighter threads are suggested implying that their number should increase, while maintaining a
fixed size of the problem. NVidia’s performance guidelines [92] suggest that the optimal number
of threads per block should be a multiple of 64. The next higher than 256 multiple of 64 is 320.
Unfortunately, using 320 threads per block means that at most two blocks can be allocated to one
MP, and thus the MP will not be fully occupied. This in turn implies that an important amount of
idle cycles spent on memory transfers cannot be saved, rendering the method less optimal with
respect to time slicing. Accordingly, our choice of T = 256 threads per block is optimal. Further,
our choice on the number of blocks also fulfills NVidia’s guidelines with respect to current and
future GPUs, see [92].

Vertical step

While conceptually more involved than the horizontal step, the overall performance figure for
the vertical step is rather similar to the horizontal one. The CUDA configuration for this kernel
is as follows. Each 2D thread block contains a number of 16 × 8 = 128 threads, while the
number of columns within each slab is S = 32, see Figure 3.6. Thus, since the input consists of
two-byte words, each thread performs coalesced memory transfers of m = 4 bytes, similar to the
horizontal step. As the number of blocks is w/S = 60, k = 4 (i.e., four blocks are scheduled per
MP), and the kernel takes 39240 cycles per warp to execute, the execution time for the vertical
step is Te = 0.46.

Unlike the horizontal step, now r = 0.83 so that no less than 352 cycles can be spared in
global-memory transaction. Note that when computing r we only counted global-memory trans-
fers, as in this case more, much faster shared-memory transfers take place, see Algorithm 3.1. As
the shared-memory usage is only 4×1.8 KB, this suggests that the overhead due to slow accesses
to global memory can be neglected, so that the transfer time Tm can be neglected. The waiting
time is Ts = 0.047 µs, and there are 344 synchronization points for the vertical-step kernel, so
that the total time is about 15.6 µs. In the worst case, this time can be as large as 1.9 ms. Thus, as
Tt = 0.46 (without waiting time), our estimate is very close to the measured execution time from
Table 3.4 – this being in turn the same as that of the horizontal step. Finally, both the measured
and estimated throughputs are comparable to their counterparts of the horizontal step.

Note that compared to the manually-tuned, optimally-designed matrix-multiplication algo-
rithm of [145] which is able to achieve a maximum throughput of 186 Gflop/s, the performance
of 100 Gflop/s of our lifting algorithms may not seem impressive. However, one should keep
in mind that matrix-multiplication is much easier to parallelize efficiently, as it requires little

52 3.6 Conclusion

synchronization. Unlike matrix-multiplication, the lifting algorithm requires a lot more synchro-
nization points to ensure data consistency between steps, as the transformation is done in-place.

The configuration we chose for this kernel is 16× 8 = 128 threads per block and w/S = 60
thread blocks. This results in an occupancy of 512 threads per MP, which may seem less optimal.
However, to increase the number of threads per block to 192 (next larger multiple of 64, see
above), would mean that either we cannot perform essential, coalesced memory accesses, or
that extra overhead due to the requirements of the moving-window algorithm would have to be
accommodated. Note that we verified this possibility, but the results were unsatisfactory.

Complexity

Based on the formulae from Section 3.4.2 we can analyze the complexity of our problem. For
any of the lifting steps using the Deslauriers-Dubuc (13, 7) wavelet, considering that the number
of flops per data element is ns = 22 (20 multiply or additions and 2 register-shifts to increase
accuracy), the numerator of (3.9) becomes about 700D. For the horizontal step, D = w/T =
7.5, so that the numerator becomes about 5000. In this case the number of cycles is about
1250, so that one can conclude that the horizontal step is indeed cost efficient. For the vertical
step, D = (S h)/T = 270, so that the numerator in (3.9) becomes about 190000, while the
denominator is 39240. Thus, the vertical step is also cost efficient, and actually its performance
is similar to that of the horizontal step (because 5000/1250 ≈ 190000/39240 ≈ 5). Of course,
this result was already obtained experimentally, see Table 3.4. Note that using vectorized MMX
and SSE instructions, the optimized CPU implementation (see Table 3.3) can be up to four times
faster than our TS estimate above. However, even in this case, both our CUDA kernels are still
cost-efficient. Obviously both steps are also work efficient, as their CUDA realizations do not
perform asymptotically more operations than the sequential algorithm.

3.6 Conclusion
We presented a novel, fast wavelet lifting implementation on graphics hardware using CUDA,
which extends to any number of dimensions. The method tries to maximize coalesced memory
access. We compared our method to an optimized CPU implementation of the lifting scheme,
to another (non-CUDA based) GPU wavelet lifting method, and also to an implementation of
the wavelet transform in CUDA via convolution. We implemented our method both for 2D and
3D data. The method is scalable and was shown to be the fastest GPU implementation among
the methods considered. Our theoretical performance estimates turned out to be in fairly close
agreement with the experimental observations. The complexity analysis revealed that our CUDA
kernels are cost- and work-efficient.

Our proposed GPU algorithm can be applied in all cases were the Discrete Wavelet Transform
based on the lifting scheme is part of a pipeline for processing large amounts of data. Examples
are the encoding of static images, such as the wavelet-based successor to JPEG, JPEG2000 [123],
or video coding schemes [9], which we already considered in [142].

Wladimir J. van der Laan, Andrei C. Jalba, and Jos B.T.M. Roerdink. Accelerating Wavelet-Based Video Coding
on Graphics Hardware using CUDA. In Proc. 6th International Symposium on Image and Signal Processing and
Analysis (ISPA 2009), September 16–18, Salzburg, Austria. Pages 614–619, 2009.

Chapter 4

Accelerating Wavelet-Based Video Coding
on Graphics Hardware

4.1 Introduction
The Discrete Wavelet Transform (DWT) has been widely applied in signal and image processing.
To meet the computational requirements for systems that handle very large throughputs, for
example in real-time multimedia processing, custom hardware has been developed. Another
option is to use a more general, widely available and relatively cheap platform, such as GPU
hardware.

We recently developed a hardware-accelerated DWT algorithm that makes use of NVidia’s
Compute Unified Device Architecture (CUDA) parallel programming model [70] to fully ex-
ploit the new features offered by the Tesla architecture, introduced in 2006 with the GeForce
8800 GPU [143]. It is a highly parallel computing architecture available for systems ranging
from laptops to high-end compute servers. Our DWT implementation is based on the Lifting
Scheme [132] which reduces the number of arithmetic operations compared to the straightfor-
ward convolution-based approach. Also, the memory usage is reduced by factoring the wavelet
transform into a sequence of steps that can be performed in-place. This is a great advantage given
the generally limited amount of high-speed memory and the large data sizes that have to be pro-
cessed in multimedia applications. The method is scalable and the fastest GPU implementation
available to date.

In this chapter, we will show how to integrate our accelerated wavelet lifting into an imple-
mentation of the Dirac Wavelet Video Codec (DWVC) [9]. This codec, first introduced by the
BBC, is gaining popularity as a free, open source alternative to H.264 [154]. It is a modern video
compression scheme that employs wavelet transforms for inter- and intra- frame image com-
pression, and makes use of motion compensation for compact storage of the difference between
successive frames. Moreover, it is on-par with other modern video codec systems, e.g., H.264,
which has gained wide acceptance in many applications like Internet broadcasting. It is a good
alternative because the usage of H.264 incurs royalty fees, and while these costs are manageable
for commercial applications, they could become prohibitive for public domain initiatives such as
video archives. DWVC provides an alternative that is free of these fees and is equal in compres-
sion rates and quality [139]. Another advantage of wavelet-based video compression is that, as

54 4.2 CUDA-based implementation of the DWT

it uses a global transform, it does not suffer from the block artifacts otherwise seen in traditional
DCT-based codecs.

The acceleration of video decoding using GPU hardware was also studied by Shen et al. [118],
with the aim to provide an architecture for video coding on the GPU, with special focus on the
motion compensation and frame arithmetic parts. As they were programming the GPU using
vertex and fragment shaders, the authors had to overcome the additional complexity of mapping
the video decoding process to the rendering pipeline. In this chapter we employ a more general
programming architecture, which means that we can focus on the actual parallel implementation
of the algorithms. Doing so, we achieve speedups of a factor 15 for the image operations, and a
factor 7.2 for the entire pipeline. In addition to the wavelet transform, we will discuss how the
motion compensation and frame arithmetic steps of this codec can be accelerated using CUDA.
Our proposed algorithm applies similarly to other wavelet-based video coding schemes that make
use of the lifting scheme, such as [78, 79, 101, 136].

The remainder of this chapter is organized as follows. In Section 4.2 we summarize the
essentials of the hardware-accelerated DWT algorithm, including a brief discussion of the CUDA
programming environment and execution model. Then in Section 4.3 we give the details of our
implementation of the DWVC in CUDA on the GPU. Section 4.4 presents benchmark results
and analyzes the performance of our method. Finally, in Section 4.5 we draw conclusions and
discuss future avenues of research.

4.2 CUDA-based implementation of the DWT

4.2.1 CUDA overview

NVidia’s CUDA programming environment allows the GPU to be programmed through tradi-
tional CPU means: a C++-like language and compiler. The usage of CUDA does not add any
overhead over rendering-based approaches, as it is a native interface to the hardware, and not an
abstraction layer. CUDA broadly follows the data-parallel model of computation [70]. The CPU
invokes the GPU by calling a kernel, which is a special C++ function.

The lowest level of parallelism is formed by scalar execution units called threads. A large
number of threads can run in parallel. Threads are organized in blocks, and the threads within
a block can share data through fast shared memory. It is also possible to place synchronization
points (barriers) to control flow between all threads within a block. The highest performance is
realized if all threads within a warp of 32 consecutive threads take the same execution path. If
flow control is used within a warp, and the threads take different paths, they have to wait for
each other (divergence). The highest level, which encompasses the entire kernel invocation, is
called the grid, which consists of blocks that execute in parallel (if multiprocessors are available).
Currently blocks within a grid cannot communicate with each other.

The CUDA architecture provides access to several kinds of memory. Global (device) memory
can be read and written in any order (random access). Registers are limited per-thread memory
locations for local storage with very fast access. Shared memory is a limited per-block chunk
of memory which is used for communication between threads in a block. Texture memory is a

Accelerating Wavelet-Based Video Coding on Graphics Hardware 55

y
’

WTx
0 −1

(WT) x
0

x
’

UP

+

−

U P

+

−x

y

x

y

Figure 4.1. Classical lifting scheme with one detail band. x0 is the original image, WT is the
lazy (trivial) wavelet transform that transforms the signal into approximation band x and detail
band y, P is the prediction step, U the update step. (WT)−1 is the inverse of the trivial wavelet
transform.

special case of device memory which is cached for locality. Constant memory is cached memory
that can be written by the CPU and read by the GPU. To achieve highest throughput, consecutive
memory locations must be simultaneously accessed by the threads. This is called memory access
coalescing [70], and it represents one of the most important optimizations in CUDA.

4.2.2 Wavelet lifting
In wavelet lifting an input signal or image is decomposed into an approximation band x and
one or more detail bands ys using polyphase decomposition, see Fig. 4.1. In lifting theory, this
polyphase decomposition is a (trivial) wavelet called the lazy wavelet transform, which splits the
signal into two parts, containing the even and odd coefficients, respectively. A prediction step
computes a prediction P (x) from the approximation band x, after which the predicted values are
subtracted from the detail band ys, to produce a new detail band y′s, i.e.,

y′s = ys − P (x). (4.1)

An update step updates the approximation band x using the detail bands ys,

x′ = x+ U (ys) . (4.2)

The entire scheme is reversible by applying the steps in reverse order while interchanging − and
+. For a multilevel transform the process is repeatedly applied to the approximation bands, until
a desired number of decomposition levels is reached. Wavelet lifting has the additional property
that it can be done entirely with integer operations, resulting in a lossless scheme when applied
to discrete images.

4.2.3 Wavelet lifting in CUDA
For separable wavelet bases in 2-D it is possible to split the operation into a horizontal and a
vertical filtering step. For each filter level, a horizontal pass performs a 1-D transform on each

56 4.3 Accelerating the Dirac Video Codec

row, while a vertical pass computes a 1-D transform on each column. Each row can be handled
in parallel during the horizontal pass, and then each column can be handled in parallel during the
vertical pass. In CUDA this implies the use of two kernels, one for each pass.

In the horizontal pass, each block starts by reading a line into shared memory using so-
called coalesced reads from device memory, executes the lifting steps in-place in fast shared
memory, and writes back the result using coalesced writes. Some duplication of border elements
is necessary to properly implement the boundary conditions. Each step is dependent on the
output in shared memory of the previous step, therefore the threads within a block have to be
synchronized every time before the next step can start. By reorganizing the coefficients [18]
we can achieve higher efficiency for successive levels after the first transformation. To be able
to coalesce, it must be possible to read back the coefficients consecutively, thus one writes the
approximation and detail coefficients back to separate halves of the memory, de-interleaving
them.

For the vertical pass we could use the same strategy as for the horizontal pass, substituting
rows for columns. But we have shown [143] that a more efficient solution is possible which
makes optimal use of coalesced memory access. Instead of having each block process a column,
we make each block process multiple columns by dividing the image into vertical slabs. The
number of columns in each slab is such that the resulting number of slab rows can still be coa-
lesced. Each thread block then processes one of the slabs, so that a thread can do a coalesced
read from each row within a slab, do filtering in shared memory, and do a coalesced write to each
slab row.

Because the shared memory in CUDA is usually not large enough to store all columns, we
use a sliding window within each slab. The dimensions of this window need to be such that each
thread in the block can transform a signal element, and additional space to make sure that the
support of the wavelet does not exceed the top or bottom of the window.

4.3 Accelerating the Dirac Video Codec
The weakest point of DWVC is currently its execution time [139]. Real-time decoding is lim-
ited to smaller resolutions (such as 800 × 600), even for the latest processors. The relatively
heavy computational load of the global wavelet transform compared to more traditional block-
wise Discrete Cosine Transforms (DCT) has prevented wavelets from being used in mainstream
video compression. In an aim to speed up decoding, we implemented all the image operations
of DWVC on the GPU, including the wavelet transform, motion compensation and frame arith-
metic. As the CPU implementation (called Schrödinger) is already heavily optimized, it provides
a good basis for performance comparison of our GPU wavelet lifting algorithm.

A DWVC stream consists of intra- and inter-frames. Intra-frames are self-contained images,
while inter-frames store the difference with respect to one or two reference frames.

Decoding consists of three major parts (Fig. 4.2): arithmetic decoding, motion compensation,
and inverse wavelet transform. Arithmetic decoding takes the bitstream and extracts parameters,
motion vectors and wavelet coefficients needed to reconstruct the video sequence. It reverses the
work of the entropy coder, which removes statistical redundancies from the data by representing

Accelerating Wavelet-Based Video Coding on Graphics Hardware 57

x0,x1,...
y0,y1,...

Motion vectors

Arithmetic decoder
Motion compensation Reference frames

Residue

Completed frame

Wavelet subbands

Input stream

+

=

Figure 4.2. Overview of decoding a DWVC stream. The steps are: arithmetic decoding, motion
compensation, and inverse wavelet transform.

common values with shorter bit sequences. This part is most conveniently handled by the CPU,
as there is very little inherent parallelism in the process.

Motion compensation exploits the similarity between neighboring video frames. It recon-
structs a frame from one or two frames preceding the current one in the stream. Motion compen-
sation is done both on a global and local level. Global motion compensation seeks to describe
movements of the camera, while local motion compensation acts on a per-block basis for smaller
moving objects.

The images (for intra-frames) and residue (for inter-frames) are stored as wavelet coefficients
in a per-component, per-subband basis in the video stream. Subbands that are zero or mostly zero
are encoded as empty subbands, represented by only one bit. Only the non-zero subbands are
transferred to the hardware. The wavelet filters that are used in the default settings of the encoder
are the Deslauriers-Dubuc (9, 7) filter [31] for intra-frames and the LeGall (5, 3) filter [69] for
inter-frames. A full list of wavelet filters used in DWVC can be found in [9].

The result of the motion compensation process is a prediction. The reconstructed residue is
added to this prediction to form the final decoded frame which is shown on the screen. If the
frame was marked as a reference for a future frame, it is stored until the stream tells it to retire.

As we already mentioned, we implemented the wavelet transforms, motion compensation
and frame operations like adding, subtracting, conversion and (un)packing on the GPU. In the

58 4.3 Accelerating the Dirac Video Codec

upcoming sections we will discuss these operations, and show how they can be applied to decod-
ing and encoding of video data.

4.3.1 Motion compensation

Traditional motion compensation algorithms divide the image into equally-sized, disjoint blocks
of pixels. This has the disadvantage that there can be strong discontinuities between neighboring
blocks, and moreover, the prediction accuracy on block edges is low. The residual difference im-
age should be as smooth as possible to achieve the best compression, as jumps and discontinuities
in the image cause large values in the detail subbands after the wavelet transform, which in turn
results in a less compact representation. Overlapped Block Motion Compensation (OBMC) [7]
overlaps neighboring blocks a bit, blending them together in the area which they share, thus
increasing prediction accuracy.

The coverage of the image by blocks is defined using four parameters. The first two, xlen
and ylen, define the size of the blocks in the horizontal and vertical direction. The second two
parameters, xsep and ysep, define the separation of the beginning of a block to the beginning
of the next one in the x- and y-direction, respectively. OBMC is a generalization of traditional
motion compensation, as it equals standard disjoint motion compensation if xlen = xsep and
ylen = ysep.

One or two reference frames can be arbitrarily selected from preceding or subsequent frames.
For example, it is possible to do a blending between the previous and the next frame, useful in
the case of a fade-in or fade-out, but it is also possible to use an image a few frames back for
reference, if that image provides a better match to the current one. If two reference frames are
used, these are blended together with weights w1 and w2.

A motion vector is a two-dimensional vector that stores the displacement of a block as com-
pared the the reference frame. For example, if the previous frame is used as a reference, and an
object moved two pixels to the right since the last frame, the motion vector for the block contain-
ing the object would be (2, 0). Sub-pixel precision is supported by interpolating the reference
frame using a bicubic spline filter. This fits perfectly to texture mapping hardware, if one stores
the reference frames as textures.

As each pixel of the resulting image is computed independently, motion compensation is
very well suited to a parallel GPU implementation. Each pixel can be part of up to four motion
compensation blocks per reference frame. The value of an output pixel (x, y) is calculated by

I (x, y) =
∑
m∈M

wm (x, y)
(
w1R1 (x+mx1, y +my1)

+w2R2 (x+mx2, y +my2)
)
, (4.3)

in which I is the output frame, M is the set of all blocks, wm (x, y) is the weight of block m
at position (x, y), w1 and w2 are the reference frame weights, Ri are the reference frames, and
(mxi,myi), i = 1, 2, are the two motion vectors for block m. The block weights are defined so

Accelerating Wavelet-Based Video Coding on Graphics Hardware 59

Figure 4.3. Dividing the frame into four block types according to the number of overlapping
blocks, for efficient motion compensation.

that ∑
m∈M

wm (x, y) = 1,

and the weights have a linear fall-off at the block edges.

The most obvious approach to a GPU implementation is to divide the image into equally-
sized CUDA blocks, whose pixels are then processed by a CUDA thread. This thread deter-
mines which motion compensation blocks overlap a pixel, and calculates the output value using
Eq. (4.3).

Such an approach will result in quite some flow control per pixel, and as neighboring pix-
els might need values from different motion compensation blocks, thread divergence arises. In
other words, in the optimal setting threads within each CUDA block should perform the same
operations, while different CUDA blocks can do different computations. An improved algorithm
divides the image into regions according to the number of overlapping blocks and orientation of
overlap (Fig. 4.3); in the center of the blocks, it suffices to take a sample from one block. Then
there are the cases in which two blocks overlap, horizontally or vertically. Here, the two blocks
need to be blended together linearly, so that there is a smooth transition. And finally there are
the diagonal overlaps where four blocks overlap, which must be blended together. A bilinear
blending is used to create a smooth transition here.

Therefore, for each region, we know exactly how many, and which blocks it depends on, and
how to blend the blocks. Thus, regions can be handled in parallel, but each needs to be handled in
a different way. In CUDA, different blocks can execute different kernels when a large conditional
statement is put around them that depends on the block identifier. As the threads within the block
all take the same path, no divergence is introduced. To use this, we pass a block type parameter
to each CUDA block. This block type tells the kernel which of the four regions mentioned before
should take part in the computation. As CUDA supports scattered writes, each block can write
to the part of the image that it computed.

The motion vectors themselves can be passed to the kernel through an array in constant
memory, or by using a texture. We noticed that using a texture is significantly faster than constant
memory in a case like this, where each thread potentially accesses a different location, so this is
preferred to the other approach. Also, unlike constant memory, textures have no 64KB limit.

60 4.4 Performance results

4.3.2 Frame arithmetic

The frames resulting from the inverse wavelet transform and the motion compensation are added
together to compute the resulting frame. All computations are done on 16-bit per component,
but the final rendering needs an 8-bit image, so the values are clamped between 0 and 255. The
output of the algorithm can be directly sent to a texture, without having to pass through the host
CPU, by using the CUDA-OpenGL interoperability API. This texture can then be rendered on a
quadrilateral to show the frame. If the frame is marked as a reference frame, a copy of the texture
is kept for use in a later motion compensation stage.

The fact that DWVC uses 16-bit integers instead of 32-bit complicates the implementation, as
both shared and global memory access is geared toward 32-bit values. Two 16-bit integers can be
combined into a 32-bit read only as long as the address is aligned to four bytes, which means that
reading or writing cannot start from an odd column. To get around this constraint, a one-column
border at the left or right of the rectangle must be processed using 16-bit memory operations.
Even though this gives some overhead, it is much faster than using only 16-bit memory accesses.

4.4 Performance results

The benchmarks in this section were run on a machine with a Dual Core AMD Opteron(tm)
Processor 280 and a NVidia GeForce GTX280 graphics card, using CUDA version 2.2 for the
CUDA programs. The codec was benchmarked in single-threaded mode. Using multiple threads
on a multi-core machine would increase the performance of both the CPU and GPU implemen-
tations, but the coordination involved in using a GPU from multiple threads, though it became
possible in version 2 of CUDA, is quite difficult. For the CUDA implementation, the result
was not copied back to the CPU after each frame, as we used direct rendering through OpenGL
textures.

In Table 4.1 we compare the overall performance of the DWVC accelerated by our GPU
implementation to the optimized CPU implementation. The experiment was performed using
two HD video sequences and one lower resolution sequence. Our method runs at an average of
50.9 frames per second for a 1920× 1080 sequence, while the CPU version runs at 10.5 frames
per second on the same video sequence. This means we achieve a speedup of 7.2 of the entire
process.

A breakdown of the computation time into different stages for two different video sequences
is shown in Table 4.2. To make a valid comparison of the total time spent in each stage, the
CPU and GPU were synchronized between stages. This prevents overlap in computation and
thus results in a somewhat lower overall performance. Stage 1 performs motion compensation
(Section 4.3.1), and is a factor 8 to 12 faster in our CUDA implementation. Stage 2 performs
arithmetic decoding of motion vectors and is the same in both implementations. Stage 3 decodes
the wavelet subbands from the input stream. This stage is a bit slower for the CUDA version,
because it includes copying the non-zero subbands to GPU memory. Stage 4 performs the inverse
integer wavelet lifting transform (Section 4.2.2) on the decoded residue, and is a factor 9 to 13
faster in the CUDA implementation. Stage 5 combines the motion compensation result and

Accelerating Wavelet-Based Video Coding on Graphics Hardware 61

residue (Section 4.3.2), and is a factor 10 to 28 faster in the CUDA implementation. Stage 6
performs upsampling of reference frames for sub-pixel motion compensation, and is a factor 10
to 17 faster in the CUDA implementation.

By excluding DECODE (arithmetic decoding) stages, subtracting 12.64 from both totals for
the sequence in Table 4.2, one can determine the speedup of the GPU accelerated operations
compared to their CPU counterpart. This amounts to a factor of about 15.

The frame-rate achieved with our method (50.9) allows for playback of high definition video
significantly faster than strictly needed for playback of those movie sequences (25).

Table 4.1. Performance in frames per second (FPS) for decoding various DWVC video se-
quences with: (i) Schrödinger CPU implementation; (ii) Our CUDA implementation

Sequence Frame size CPU CUDA

Big Buck Bunny trailer 1920× 1080 10.5 56.4
Elephant’s Dream 1024× 576 33.7 125.6
2012 movie trailer 1920× 800 13.2 71.2

Table 4.2. Big Buck Bunny trailer (813 frames, 1920 × 1080) decoded with: (i) Schrödinger
CPU implementation; (ii) Our CUDA implementation

Stage CPU (s) CUDA (s)

1 MOTION DECODE 0.64 0.64
2 MOTION RENDER 16.16 1.33
3 RESIDUAL DECODE 12.00 12.94
4 WAVELET TRANSFORM 22.52 1.63
5 COMBINE 11.27 0.39
6 UPSAMPLE 14.53 0.85

Total 77.13 17.76

4.5 Conclusion
In this chapter, we showed how to accelerate the Dirac Video Codec by a fast wavelet lifting
implementation on graphics hardware using CUDA. The method maximizes coalesced memory
access. We also accelerated the motion compensation and frame arithmetic stages of this codec.

The experiments on high definition video sequences have demonstrated that one can achieve
a speedup factor of 7.2 for the entire decoding process including the CPU steps, and of 15 times

62 4.5 Conclusion

for just the GPU part. In our benchmark we could playback a 1080p resolution video at 50.9
frames per second.

As the decoding stages that remain on the CPU are quite involved, further work could involve
the acceleration of the arithmetic decoding on (future) GPU hardware, or the development of
statistics-based data compression methods that are more paralellizable.

First published as: Wladimir J. van der Laan, Simon Green, and Miguel Sainz. Screen Space Fluid Rendering with
Curvature Flow. In Proc. I3D 2009: The 2009 ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, pages 91-98, 2009.

Chapter 5

Screen Space Fluid Rendering with
Curvature Flow

5.1 Introduction
For interactive applications such as games, particle based fluid simulation methods like Smoothed
Particle Hydrodynamics (SPH) [30] are commonly preferred to Eulerian fluid representations.
This is because the fluid is able to flow everywhere in the scene without the need to define a
finite grid, which is costly in terms of memory and computation. Particle methods are also more
convenient to integrate into existing physics systems as particles can collide against the scene
geometry just like other rigid objects, without the need to voxelize the scene geometry into the
grid. The drawback is that it is more difficult to extract a surface for rendering. Although there
are extensive contributions in the literature [12, 22, 73] on particle-based fluid simulations, there
is very little on rendering particle fluids. Of the methods that have been developed, most are not
suitable for real-time use in games. Usually, the fluid surface is constructed in world-space, either
directly as a mesh [126], or as implicit surface and then polygonized using Marching Cubes [76]
or a similar method [109, 156]. After this, relaxation and optimization operations can be applied
to the entire mesh to increase the smoothness of the surface, which is both computation and
memory intensive.

Implicit surface polygonization methods also suffer from grid discretization artifacts in frame-
to-frame coherence [3], as the grid is static and does not move with the fluid. This is especially
visible when using low resolution grids in real-time rendering. In [160] an interesting point-
based rendering approach is presented where ray-metaball intersections are computed entirely
on the GPU in a two pass rendering approach. This method removes the requirements for a grid
discretization.

If the fluid is moving and rendering is only desired from only one, or at most a few view-
points per frame, a more memory and compute efficient method is to only construct the surface
represented by the particles that are visible to the camera in view-space as in [87].

The main contribution of this chapter is a splatting-based fluid rendering method that

• Achieves real-time performance, with a configurable speed versus quality trade-off.

• Does all the processing, rendering and shading steps directly on the graphics hardware.

64 5.2 Related work

• smoothes the surface to prevent the fluid from looking blobby or jelly-like.

• Is not based on polygonization, and thus does not suffer from the associated tesellation
artifacts.

• Is simple to implement, consisting of a few passes using fragment shaders and intermediate
render targets.

• Has inherent view-dependent level-of-detail, since the method is based on a grid on screen-
space.

Another contribution is a way to generate noise that moves with the particles on the surface
of the fluid, which can be used to add foam-like effects and surface detail on a smaller scale than
the particles themselves.

5.2 Related work
Rosenberg and Birdwell [109] optimized Marching Cubes specifically in the context of particle
isosurface extraction, achieving real-time performance for up to 3000 particles. Although rela-
tively fast, the results look quite blobby, and as their method directly renders the resulting mesh
there is no way to post-process the result to improve quality. Also, for SPH fluids we typically
need at least 10000 particles for the simulation to look realistic.

Williams outlines in his thesis [156] a new approach to surfacing particle-based fluid sim-
ulations. A generalization of Marching Cubes, called Marching Tiles, is used which allows
constraints to be put on the quality and smoothness of the mesh. This results in nice smooth
surfaces, but the approach is designed for offline rendering and is not real-time. It also suffers
from the same drawbacks as Marching Cubes, such as having a fixed grid.

Somewhat related to our method is the projected grid as was introduced in [61] which trans-
forms a displaced surface so that it resembles a uniform grid in post-perspective space as closely
as possible. This provides spatial scalability as well as high relative resolution without resorting
to LOD schemes. Our method relies on a uniform (per-pixel) grid in post-perspective space as
well.

In [87] the authors present an approach for generating the boundary of a three-dimensional
point cloud as a mesh in screen-space, generating the surface only where it is visible. It first
computes the depth to the surface at each pixel on the screen, smoothes this depth map using a
binomial filter, then polygonizes the depth buffer. The polygonization step is computationally
very intensive, and does not map to graphics hardware in a straightforward way. In our method,
instead of generating an intermediate mesh, the depth buffer is used for rendering directly.

Finally, in [160] the authors present an implicit ray-metaball algorithm that does not require
an explicit metaball reconstruction, using point based rendering techniques and assimilating the
metaballs as point based splats. First, non overlapping fluid surface points are determined using
a GPU based dynamic grouping algorithm [159] and an initial ray-metaball intersection is com-
puted. In a second pass the final intersection with the isosurface is determined for each pixel

Screen Space Fluid Rendering with Curvature Flow 65

(a) (b) (c)

Figure 5.1. Drawing the particles as spheres (a) front view (b) in view-space and (c) after
perspective projection.

from the contributions of disjoint sets. The advantage of this method is that it does not require
a subdivision grid for the surface reconstruction. In order to minimize the bumpy appearance
resulting from the simulations, a fairly big metaball radius has to be used, at the cost of very
thick surfaces.

Level-sets [81] have been used extensively in fluid simulations to track the interface between
fluid and air as they provide a deformable surface representation that allows for topology changes.
We have incorporated a few ideas from level-sets but have not applied the full method, as even
efficient level-set methods involve too much computation to be used for this purpose in real-time.

Subsequent to our research we became aware of another publication [23] that uses a similar
image-space fluid rendering technique but lacks the advanced smoothing and thickness-based
rendering of our method.

5.3 Method

In this work we will assume a SPH particle simulation has already been carried out. The input
data consists of the positions xi of particles pi, i ∈ {0..n}, in any order. Optionally, the particles
can have an associated density ρi and velocity vi coming from the simulation. A high level
overview of the method is as follows: Starting from the fluid particle positions, surface depth
(explained in section 5.3.1) and thickness (section 5.3.3) is written to two render targets. The
surface depth is then smoothed (section 5.3.2), and a dynamic noise texture is generated on the
surface of the fluid (section 5.3.4). Then, a compositing pass is performed that combines the
smoothed surface depth, the noise texture and an image of the scene behind the fluid into the
final rendering of the fluid (section 5.3.5).

66 5.3 Method

5.3.1 Surface depth
Before anything can be rendered the front-most surface of the fluid from the viewpoint of the
camera is determined. We do this by rendering the particles as spheres, and retaining the closest
value at each pixel using the hardware depth test (see Figure 5.1).

In order to obtain a representation of the surface of the fluid from the viewer’s point of
view, we render the particles as spheres using point sprites (screen oriented quads) with depth
replacement in the fragment shader. This avoids the use of complex geometry and is a well known
technique. Unlike in surface splatting [3, 11], we do not explicitly splat the normal or shaded
color values, but calculate the normals from the depth values while rendering. The reason for
this is that the depth values will be manipulated by the smoothing step which will be discussed
in next section. In some cases it is desirable to exclude stray particles from rendering as these do
not form part of any surface. This is easily accomplished by putting a threshold on the density ρi
obtained from the simulation. To make the transition more smooth, the low-density particles can
be rendered separately as spray.

5.3.2 Smoothing methods
It is not desirable for the particles to be visible as spheres since this results in an unrealistic jelly-
like appearance. We would like a smooth, flat surface that approximates the particle positions.
In our method, we achieve this by smoothing the surface in screen-space.

An obvious approach is use a Gaussian blur or variants such as Bilateral Gaussian filters [6]
or more advanced filters like [19]. However, straightforward Gaussian blurs will cause blurring
over silhouette edges and can cause plateaus of equal depth when using large kernels. Bilateral
filters preserve edges, but are non-separable and therefore expensive. It is difficult to implement
a blur with a variable-width kernel efficiently on graphics hardware.

As an alternative to Gaussian smoothing, we can look at the problem in a different way: we
are interested in a method that smoothes out sudden changes in curvature between the particles,
forming a smooth and continuous surface. One way to think of this is to minimize the curvature.
This also has a natural motivation, as it is similar to surface tension in fluids which is responsible
for the formation of water drops and puddles. A more general name for this process is called
curvature flow [81].

Curvature flow evolves a surface along its normal direction with the speed depending on the
magnitude and sign of the mean curvature of the surface, and is well-known from the level-set
literature. In our application we are working on a depth buffer, which means that the surface can
only be moved in the z direction perpendicular to the view plane. However, as the viewpoint is
constant we still achieve the desired effect of smoothing the surface by moving the z value in
proportion to the curvature, thus we define

∂z

∂t
= H, (5.1)

in which t is a smoothing time step, and H is the mean curvature. From now on, we will call this
method screen-space curvature flow.

Screen Space Fluid Rendering with Curvature Flow 67

Mean curvature is defined as the divergence of the unit normal of a surface,

2H = ∇ · n̂ (5.2)

By inverting the projection transformation, a value in the depth buffer is mapped back to a
point P in view space. Vx and Vy are the dimensions of the viewport, and Fx and Fy is the focal
length in the x and y direction subsequently,

P(x, y) =

2x
Vx
−1.0

Fx
2y
Vy
−1.0

Fy

1

 z(x, y) =

 Wx

Wy

1

 z(x, y) (5.3)

The normal is calculated by taking the cross product between the derivatives of P in the x
and y direction,

n(x, y) = ∂P
∂x
× ∂P

∂y

=

 Cxz +Wx
∂z
∂x

Wy
∂z
∂x

∂z
∂x

×
 Wx

∂z
∂y

Cyz +Wy
∂z
∂y

∂z
∂y

≈

 Cxz
0
∂z
∂x

×
 0

Cyz
∂z
∂y

 =

 −Cy ∂z∂x−Cx ∂z∂y
CxCyz

 z,

in which Cx = 2
VxFx

, Cy = 2
VyFy

, we chose to ignore the terms of the derivative of P that depend
on the view position Wx, Wy because it simplifies the computations a lot, and the difference is
negligible as the contributions are small. The unit normal

n̂(x, y) = n(x,y)
|n(x,y)| =

(−Cy
∂z
∂x
,−Cx

∂z
∂y
,CxCyz)

T

√
D

, (5.4)

in which

D = C2
y

(
∂z

∂x

)2

+ C2
x

(
∂z

∂y

)2

+ C2
xC

2
yz

2 (5.5)

is substituted in the equation for mean curvature (Eq. 5.2), so that H can be derived. The z
component of the divergence is always zero, as z is a function of x, and y and thus does not
change when these are kept constant. We get

2H =
∂n̂x
∂x

+
∂n̂y
∂y

=
CyEx + CxEy

D
3
2

(5.6)

in which

Ex =
1

2

∂z

∂x

∂D

∂x
− ∂2z

∂x2
D, (5.7)

Ey =
1

2

∂z

∂y

∂D

∂y
− ∂2z

∂y2
D (5.8)

68 5.3 Method

A simple Euler integration of Eq. 5.1 in time is used to modify the z values in each iteration.
The spatial derivatives of z are computed using finite differencing.

The surface may be discontinuous because of silhouettes in screen-space. To prevent blend-
ing different patches of surface together it is important to make sure that boundary conditions are
enforced where large changes in depth occur between one pixel and the next. At these bound-
aries, and the edges of the screen, we force the spatial derivatives to be 0 to prevent any smoothing
from taking place.

The number of iterations is chosen depending on the smoothness that is desired. The more it-
erations the smoother the surface will be, but this comes at the expense of increased computation
time.

5.3.3 Thickness

One expects an object to become less visible depending on the amount of fluid that is in front
of it. To accomplish this we need to compute the amount of fluid between the camera and the
nearest opaque object for each pixel, which we refer to as the “thickness“. When rendering, the
thickness is used to attenuate the color and transparency of the fluid.

The particles are regarded as spheres of fluid with a fixed size in world space. The rendering
process is the same as that in Section 5.3.1, with the difference that the fragment shader outputs
the thickness of the particle at that position instead of a depth value. Additive blending is used
so that the amount of fluid is accumulated at each position on the screen. Depth test is enabled,
so that only particles in front of the scene geometry are rendered,

T (x, y) =
n∑
i=0

d(
x− xi
σi

,
y − yi
σi

), (5.9)

where d is the depth kernel function, xi and yi are the projected position of the particle, x and y
are screen coordinates, and σi is the projected size.

Strictly speaking this measure of thickness is only correct if the particles do not overlap, but
this is a reasonable assumption in SPH due to repulsive inter-particle forces.

5.3.4 Noise

Although our method helps to hide the particle-based nature of the fluid the result can still look
artificially smooth. Surface detail and foam is an important visual element in real fluids. A
straightforward way to improve this would be to perturb the surface using a noise texture and
thus add small-scale detail, as in [61]. However, generating fixed noise in world space or eye
space makes it appear as if the noise is stuck in place. The challenge is to have noise that is
advected by the fluid, but is of a smaller scale and higher frequency than the simulated, particle
based fluid.

Instead we propose to use Perlin noise [100] by assigning one octave of noise to each pro-
jected particle based on its index value, so that a certain pattern of noise remains with each

Screen Space Fluid Rendering with Curvature Flow 69

particle. By using additive blending, this results in a Perlin noise texture in which the octaves
move relative to each other and along with the flow.

For each particle a point sprite is rendered with a Gaussian kernel. The resulting value is
multiplied with an exponential fall-off based on the depth below the surface, so that particles
contribute less as they submerge,

I(x, y) = noise(x, y) ∗ e−x2−y2−(pz(x,y)−d(x,y))2 , (5.10)

in which p is the view-space position of this pixel, d the depth as sampled from the surface depth
texture, and x and y vary between −1 and 1. The noise texture noise is varied per particle to
prevent patterns from becoming apparent.

This noise kernel is then summed for every particle on the screen to get a noise value at every
pixel to be used for shading,

N(x, y) =
n∑
i=0

I(
x− xi
σi

,
y − yi
σi

), (5.11)

Fluid should become more perturbed when the flow is violent, and this is achieved by marking
the fluid particles when a large change in velocity vi happens,

|vi(t)− vi(t− 1)| > τ, (5.12)

where τ is a threshold value. For these particles, the noise amplitude will be higher. After a
while, the particles cool down and revert to normal.

5.3.5 Rendering
In the final step, all the intermediate results are composited into a final image by rendering a
full-screen quad. The optical properties of the fluid are based on the Fresnel equation, with a
reflection and refraction component and a Phong specular highlight, computing the output color

Cout = a(1− F (n · v)) + bF (n · v) + ks(n · h)α, (5.13)

where F is the Fresnel function, a is the refracted fluid color, b is the reflected scene color, ks and
α are constants for the specular highlight, n is the surface normal and h is the half-angle between
the camera and the light, and v is the camera vector. Depth test is enabled when rendering the
fluid, and the depth returned by the fragment shader is copied from the surface depth (see section
5.3.1).

To shade the surface of the fluid the view-space normals n are calculated using the finite dif-
ferences of the surface depth d(x, y), as in equation 5.4. Simply using the finite differences in one
direction to calculate the normal will result in artifacts along the silhouettes. When a discontinu-
ity is detected, by comparing the difference in depth to a threshold, we chose the smallest absolute
finite difference (for example, the smallest of |z(x, y)− z(x+ 1, y)| and |z(x, y)− z(x− 1, y)|).
In addition to this, the noise textureN(x, y) is used to perturb the normals to add small, wave-like

70 5.3 Method

(a) Without foam

(b) With foam

Figure 5.2. Same scene with foam enabled and disabled. Rendered using screen-space curva-
ture flow, with smoothing computed at half resolution.

Screen Space Fluid Rendering with Curvature Flow 71

surface detail to the fluid by adding the partial derivatives of the noise texture to the calculated
normals. Furthermore, a grayish color can be added depending on the magnitude of the noise to
simulate a surface foam effect like in Figure 5.2.

The thickness T (x, y) is used to attenuate the refracted color of the fluid a,

a = lerp(Cfluid, S(x+ βnx, y + βny), e
−T (x,y)), (5.14)

the thicker the fluid, the more it attenuates the background color. Thin areas of the fluid show
through the background scene. When shading the fluid we use a slightly different exponential
fall-off for each color channel, so that the color varies in an interesting way with the thickness.
For the transparency, the scene without the fluid is first rendered to a background texture S(x, y).
The texture coordinates used to sample the background scene texture are perturbed based on the
normal of the surface n to give the illusion of refracting the object behind the fluid. β increases
linearly with the thickness,

β = T (x, y)γ, (5.15)

in which γ is a constant that depends on the kind of fluid, and determines how much the back-
ground is refracted. The reflected color b is determined by sampling a cubemap texture of the
environment based on the reflected direction, computed from the surface normal and the view
vector.

Interpolation

As the PDE for curvature minimization is stiff, and an explicit integration scheme is used, stabil-
ity issues can arise causing the system to oscillate. For this reason, at high resolutions it takes a
lot of iterations at a small timestep to retain stability. A trade-off can be made to sacrifice some
quality for performance by using an approach like that in [17], doing both the fluid rendering
and post-processing steps at a lower resolution. The scaling is difficult due to the presence of
silhouettes. Inside a body of fluid, the depth is interpolated linearly, but silhouettes are handled
as a special case. These should not look sharp or jagged, if they look blurry or smooth it is more
acceptable. For this reason, we blend the final shaded color, computed at low resolution, over
edges instead of the normal or depth value. This has the effect of smoothing the silhouettes.

Interpolation has the result that high frequency features will be lost due to the sampling.
Because of the smoothness, half or quarter resolution fluid can look better than full resolution
from close up.

5.4 Results and discussion
All benchmarks were performed on a NVIDIA GForce 8800GTS 512 in 1024× 768 resolution.
The result of a NVIDIA PhysX SPH fluid simulation of 64000 particles was rendered using our
method. The computation time of the simulation is not included in the results.

Performance figures are shown in Table 5.1 for both the corridor scene (Figure 5.5) and the
NVIDIA eye logo (Figure 5.6). In the table, smoothing based on a a two-pass bilateral blur

72 5.5 Conclusions and future work

using a Gaussian kernel is compared against various settings of screen-space curvature flow.
This method, at quarter resolution is even a little bit faster than the Gaussian smoothing. Half
resolution is slower, and full resolution is much slower, because the number of iterations needs
to be increased to achieve stability.

It is important to note that the advantage of the presented method is that it allows to achieve
a higher degree of smoothness at a lower cost than the Bilateral Gaussian smoothing method,
and in particular avoids disruptive artifacts caused by using a separable filter approach on non-
separable kernels. In Figure 5.8 we can see that a similar image quality is achieved by running
six iterations of the Bilateral Gaussian, with a performance degradation. In Table 5.2 we present
the overall frame cost for different settings of the Bilateral Gaussian blur filter. It shows that the
most significant penalty is paid when the number of iterations is increased to produce a similar
image to the curvature flow method, presented in this chapter.

When adding noise and foam the rendering becomes significantly slower, because of the
extra rendering pass that splats the noise kernels. The performance could be improved by ren-
dering only particles close to the surface, if this information is available from the simulation. For
example, the density ρi might be used, as the density is lower the closer you get to the surface.

Figure 5.2 shows a waterfall with and without foam. The detail added by the foam makes the
waterfall look more rough, like a real waterfall, and makes it look less like a synthetic smooth
fluid. Figure 5.3 shows a close-up of the fluid itself, with three rendering methods. With Gaussian
smoothing, bumps are clearly visible, with screen-space curvature flow the bumps are smoothed
out, but the fluid looks unnatural. By adding surface noise, the surface gets a bit more realism.
Figure 5.4 shows a close-up of the waterfall in the corridor scene, comparing the three rendering
methods under somewhat more turbulent conditions. Figure 5.5 shows a close-up of fluid flowing
out of a pipe for both our Curvature Flow method and the Gaussian smoothing approach. Figure
5.6 shows a comparison of our method and the Gaussian smoothing on another scene simulating
a smooth green liquid inside a transparent container. We do not show an image with foam for
this case as the fluid is too viscous to form foam.

Figure 5.7 shows the screen-space curvature flow process at work. On the left side it displays
the rendered images, and on the right side a color-coded image of the curvature. Black is zero
curvature, green is positive curvature and red is negative curvature. As the number of iterations
increases, the curvature decreases, which can be seen as the curvature images become darker.
The number of iterations can be freely chosen based on the desired smoothness.

Only the surface that is nearest to the camera is rendered. In most cases this is acceptable,
because the thickness-based shading gives an illusion of volume to the fluid, but it is not entirely
correct if there are multiple layers of fluid with air in between them.

5.5 Conclusions and future work
In this chapter we have presented a new method for rendering fluids in real-time directly from
particle based representations without the need for intermediate triangulation, but which still
produces a high-quality fluid surface. We have also introduced new ideas to add thickness-based
shading and small-scale surface detail to fluids.

Screen Space Fluid Rendering with Curvature Flow 73

Table 5.1. Performance comparison (in Frames Per Second) of screen-space curvature flow
with different settings, to separable bilateral Gaussian blur (Corridor and NVIDIA logo)

Corridor dataset Frame (ms)

Bilateral Gaussian smoothing 18.1
Quarter res., 15 iterations 17.5
Half res., 40 iterations 19.6
Full res., 100 iterations 50.0
Foam+noise, quarter res, 15 iterations 30.0

Logo dataset

Bilateral Gaussian smoothing 22.7
Quarter res., 15 iterations 23.3
Half res., 40 iterations 28.6
Full res., 100 iterations 50.0

Table 5.2. Performance degradation of the Bilateral Gaussian

Method Iterations Frame (ms)

Curvature Flow - 27.8
Bilateral Gaussian 1 25.6
Bilateral Gaussian 2 31.3
Bilateral Gaussian 4 38.5
Bilateral Gaussian 6 47.6

Future work may involve looking at using an implicit formulation of the integration scheme,
as this would be more stable and require fewer time steps and thus improve performance. This
might be difficult as the PDEs for curvature flow are quadratic, not linear. A semi-implicit [124]
formulation of the curvature flow could also help. We would also like to investigate using CUDA
or DirectX 11 Compute Shaders to improve the performance of the blur stage.

74 5.5 Conclusions and future work

(a) Gaussian smoothing

(b) Screen-space curvature flow

(c) With surface noise

Figure 5.3. Comparing Gaussian, screen-space curvature flow and surface noise for close-up
view, with the smoothing computed in quarter resolution.

Screen Space Fluid Rendering with Curvature Flow 75

(a) Gaussian smoothing

(b) Screen-space curvature flow

(c) Screen-space curvature flow with surface Perlin noise

Figure 5.4. Waterfall, comparing Gaussian and screen-space curvature flow with and without
surface noise (smoothing computed in quarter resolution).

76 5.5 Conclusions and future work

(a) Gaussian smoothing

(b) Screen-space curvature flow

(c) Screen-space curvature flow with surface Perlin noise

Figure 5.5. comparing Gaussian and screen-space curvature flow with and without surface
noise (smoothing is computed at half instead of quarter resolution).

Screen Space Fluid Rendering with Curvature Flow 77

(a) Gaussian smoothing

(b) Screen-space curvature flow

Figure 5.6. comparing Gaussian (a) and screen-space curvature flow (b) on NVIDIA logo
(quarter resolution)

78 5.5 Conclusions and future work

(a) 0 iterations, image (b) 0 iterations, curvature

(c) 40 iterations, image (d) 40 iterations, curvature

(e) 60 iterations, image (f) 60 iterations, curvature

Figure 5.7. The screen-space curvature flow process. Left: rendered images, Right: color-
coded curvature. As the number of iterations increases, the curvature decreases.

Screen Space Fluid Rendering with Curvature Flow 79

(a) Curvature flow method

(b) Bilateral Gaussian

Figure 5.8. Close-up of fluid using curvature flow and the equivalent visual results using 6
iterations of Bilateral Gaussian

80 5.5 Conclusions and future work

Wladimir J. van der Laan, Andrei C. Jalba, and Jos B.T.M. Roerdink. A Memory and Computation Efficient Sparse
Level-Set Method. Journal of Scientific Computing, 2010, http://dx.doi.org/10.1007/s10915-010-9399-5, p. 1-22.

Chapter 6

A Memory and Computation Efficient
Sparse Level-Set Method

6.1 Introduction
Since its introduction by Osher and Sethian [98], the level set method has become the method of
choice for capturing and tracking moving interfaces. It has found applications in a wide variety
of scientific fields, ranging from chemistry and physics to computer vision and graphics. For
example, in computer vision, most state-of-the-art segmentation techniques are based on level
sets to steer the evolving contour or surface towards the objects of interest [138].

The main idea of the level set method is to represent the dynamic interface (e.g., contour, sur-
face, etc.) implicitly and embed it as the zero level set of a time-dependent, higher-dimensional
function. Then, evolving the interface with a given velocity in the normal direction becomes
equivalent to solving a time-dependent partial differential equation (PDE) for the embedding
level set function. The main advantage of the level set method is that it allows the interface to
undergo arbitrary topological changes, which is much more difficult to handle using explicit rep-
resentations. The cost which has to be paid for the flexibility offered by the level set method is
twofold. First, computationally, one has to solve the time-dependent level-set PDE in a higher-
dimensional space than that of the embedded interface, and secondly, the memory requirements
are higher than the size of the interface, as one needs to explicitly store a uniform Cartesian grid
for solving the level set PDE. To address the computational issue, a number of techniques have
been proposed, such as the so-called narrow-band schemes, see Section 6.2. Such methods rely
on the fact that it suffices to solve the PDE only in the vicinity of the interface in order to pre-
serve the embedding. Thus, the computational requirements scale with the size of the interface.
However, most narrow-band methods require the (uniform) computational grid to be explicitly
stored. As shown by Nielsen and Museth [89], hierarchical structures (e.g., based on octrees)
only need to store points of the finest grid at the interface, while courser grids are used in the
remaining part of the narrow band [33, 77, 84, 127]. However, these methods still require large
amounts of memory, use complicated data structures, and additionally, increase computational
requirements compared to narrow-band methods, as access to grid points is relatively slow.

In this chapter we present efficient data structures and algorithms for tracking dynamic inter-
faces through the level set method.

http://dx.doi.org/10.1007/s10915-010-9399-5

82 6.2 Previous and related work

Our method, which we call Sorted Tile List, uses tiles, i.e., small, fixed-size blocks, to repre-
sent the narrow band around the interface. Instead of using a coarse grid of pointers to tiles that
intersect the interface, our method implicitly locates the neighbours of each tile by maintaining an
active list of tiles lexicographically sorted by coordinates. While several methods which address
both computational and memory requirements have been very recently introduced [13, 54, 89],
we show that our sequential algorithm is faster than these recent approaches and more impor-
tantly, that our algorithm can greatly benefit from both fine- and coarse-grain parallelization by
leveraging SIMD and/or multi-core configurations.

The main contributions are:

• A highly efficient, tile-based, sparse-grid method for the level-set representation, which
works in any number of dimensions.

• A fast, parallelizable and memory-efficient data structure that can be used to manage sparse
grids of unbounded size.

• Fast, scalable algorithms for iterating and maintaining the proposed data structure, en-
abling efficient simulations based on level sets. More specifically, the temporal and spatial
complexities of our data structure with the associated sequential algorithms are as follows:

– Storage requirements are proportional to the number N of tiles intersecting the inter-
face, it follows that the memory footprint of our method is optimal and scales with
O(Nd−1), where d > 1 is the number of spatial dimensions.

– Sequential access to grid points has time complexity O(N).

– Access to neighbouring grid points within the computational finite-difference stencil
has time complexity O(1).

– Random access to grid points has complexity O(logN).

– Maintaining the sparse data structure is linear, i.e., O(N).

6.2 Previous and related work
As the level-set method has proven to be a very useful tool in any application requiring the track-
ing of moving interfaces, there has been continuous interest in developing efficient algorithms to
address the large computational and memory requirements involved, see Section 6.1.

The computational issue was first addressed with the introduction of the so-called “narrow-
band schemes” [2, 21]. The basic idea is to restrict the computations to a small vicinity around
the zero level set used to represent the deforming interface. Whitaker [153] further improved the
efficiency of this scheme, by performing calculations only at grid locations corresponding to the
interface, resulting in a stencil only as wide as necessary for the finite-difference calculations at
these locations. Peng et al. [99] also solved the level set PDE only in a narrow band around the
interface, but used for its storage simple arrays as opposed to the more complex linked lists used
in [153].

A Memory and Computation Efficient Sparse Level-Set Method 83

Whereas narrow-band methods effectively address the computational issue, they still need to
explicitly store a full, regular Cartesian grid and additional data structures (e.g., arrays or lists)
to pinpoint grid points belonging to the narrow band. Thus, such methods still have storage
complexities scaling with the size of the grid. The first attempt to overcome this limitation was
due to Strain [127], who used quadtree meshes to reduce memory requirements to the size of
the interface, as opposed to the size of the grid. Improvements to the original quadtree method
were later developed [33, 84], and an extension to surfaces by means of octree grids was re-
cently introduced [77]. As pointed out by Nielsen and Museth [89], while tree-based methods
achieve smaller memory footprints, they also have a number of drawbacks. Most notably, the
non-uniform discretization of tree-based meshes makes it non-trivial to use high-order, finite dif-
ference schemes. Therefore, such methods use semi-Lagrangian schemes [127], which limit the
class of problems which can be tackled to hyperbolic ones; see [89] for further details.

An interesting approach to reduce the memory requirements of the level set method was
presented by Bridson in [13], dubbed the “Sparse Block Grid” (SBG) method. In 3D, this method
divides the volume of size n3 into small blocks of size m3 voxels each. A coarse grid of size
(n/m)3 stores pointers to blocks that intersect the interface. Although this method has non-
optimal storage complexity, it maintains constant access time similar to the full-grid method.

Recently, Nielsen and Museth introduced the Dynamic Tubular Grid (DT-Grid) method [89],
a recursive, compressed level-set representation inspired by the compressed-row-storage tech-
nique used to represent sparse matrices. The authors showed that the memory requirement of
DT-Grid is optimal, i.e., it is proportional to the size of the interface. Moreover, their exper-
iments showed that the 3D DT-Grid is faster and more memory efficient than state-of-the-art
octree-based approaches. Huston et al. [54] used hierarchical run-length encoding (RLE) in a
dimensional-recursive fashion to encode the domain in a series of runs, each associated with a
specific run code. Regions away from the narrow band are encoded to just their sign represen-
tation, while the narrow band is stored in full precision. Although this method is more flexible
than DT-Grid [54], the price paid is a slight increase in computation time and memory usage.

Our method is similar to the SBG method [13], in that it uses tiles, i.e., small, fixed-size
blocks, to represent the narrow band around the interface, see Fig. 6.2. Unlike SBG, our method
does not use a coarse grid of pointers to tiles that intersect the interface. Instead, we propose an
approach that can implicitly locate the neighbours of each tile, by maintaining a list of active tiles
lexicographically sorted by coordinates. Thus, a requirement in every step of our method is to
preserve the ordering of the active tiles, such that re-sorting them is not necessary. The proposed
method also bears some similarities to the method of Lefohn et al. [68]. Similar to this approach,
our method is tile-based and also uses gradient information from all elements of each active page
to determine whether the page has still to be active during the next iteration. However, in contrast
to this method, we do not need to store a map of the complete domain or to maintain a list of
neighbours for each tile. Further, the complex paging mechanism of Lefohn’s method is avoided
altogether in our method, and updating the active list involves a simple, sequential traversal of
the list. Moreover, our method is not bound to a fixed domain. Instead, it allocates and de-
allocates new tiles as the interface propagates to accommodate the deformations. To conclude,
the main advantages of our tile-based approach are that the resulting method is highly efficient
and straightforward.

84 6.3 Overview of the level set method

Figure 6.1. Level-set example in 2D. Top row: evolving interface Γ(t). Bottom row: cor-
responding graphs of φ(x, t) at three different time steps; left-to-right: three initial contours
expand at constant speed and eventually merge. The interface is given by the intersection of the
plane z = 0 (indicated in dark grey) with the graph of φ.

6.3 Overview of the level set method

In the level set method, a closed (d−1)-dimensional hyper-surface Γ(t = 0) is implicitly defined
as the zero set of an d-dimensional Lipschitz continuous function φ(x, t = 0) : Rd → R, e.g.,
the distance to Γ(t = 0), with x ∈ Rd. Propagating Γ(t) along its normal direction with speed
v can be done by evolving the function φ defined as follows. Let φ(x, t = 0) = ±δ, with δ the
(signed) distance from x to Γ(t = 0). Thus, the set S = {x ∈ Rd |φ(x, t = 0) = 0} corresponds
to the location of the embedded hyper-surface Γ(t = 0), see Fig. 6.1. Throughout the chapter we
assume that the function φ has positive values outside the contour, and negative values inside.

With this notation, the equation for the function φ(x, t) that represents the evolution of Γ(t)
is then [98]:

∂φ

∂t
= −v |∇φ| . (6.1)

If the speed function v is a positive constant, φ will shift up along the z-axis, so the contour will
expand, see Fig. 6.1; if v is negative, the contour will shrink.

A Memory and Computation Efficient Sparse Level-Set Method 85

Intrinsic geometric properties of the evolving hyper-surface are easily determined from the
level set function φ. In 3D for example, the mean curvature κ of each level set of φ is

κ =
1

2
∇ · ∇φ
|∇φ|

. (6.2)

For more details and applications of the level set method we refer to [95,96,98,116,138] and
the references therein.

6.3.1 Sparse-grid level set representations
Considering that the goal is to track a moving interface represented by the zero level set of
the embedding function φ, solving the PDE in Eq. (6.1) for φ on the entire domain would be
inefficient, both in terms of memory and computation. Therefore, efficient algorithms for solving
level-set equations perform the required computations only in a narrow band along the zero level
set, see [2, 21, 99, 153]. Further, to minimize memory requirements sparse methods [13, 54, 89]
have been introduced, see Section 6.2.

When a signed distance transform is used as the underlying function φ, the calculation can
be restricted to a certain distance from the interface, by setting a range of values that we are
interested in. The result can be clamped to the range (−γ, γ), so that the function φ at a certain
distance away from the interface has a constant value and a zero gradient magnitude, see [99].
This is illustrated in Fig. 6.2.

Similar to [13, 68], our method divides the domain into fixed-size tiles. Each tile represents
a part of the domain of the function φ. Tiles that only contain locations with values outside
the range (−γ, γ) are considered irrelevant and thus are not computed or stored. Hence, the
remaining tiles will necessarily contain the zero level set (or be very close to it); we call the
collection of such tiles the active set.

The active set has to be constantly maintained while the simulation is running, so that the
moving interface remains inside the active tiles. It follows that new tiles need to be dynamically
created when the interface approaches a boundary of a tile, and that tiles can be deleted when
they become irrelevant to the simulation.

6.3.2 Reshaping the level set function
Due to small numerical inaccuracies that build up over time when integrating the PDE in Eq.
(6.1), the density of the level sets might not remain constant over the domain, i.e., φ is no longer
the signed distance transform to the interface. If the density becomes too low, a sparse represen-
tation becomes inefficient, as the range (−γ, γ) spreads over a wider band. On the other hand, if
the density becomes too high, instabilities can result. To maintain a consistent level-set density,
we make use of the rescaling speed term introduced in [68].

If φ is a signed distance transform, the gradient magnitude of the function will be unity
over the entire active domain, i.e., |∇φ (x)| = 1. We can set up a PDE of the form ∂φ

∂t
=

sgn (φ) (1− |∇φ|), which constrains the level sets to have the desired density or gradient mag-
nitude. When discretizing this PDE using a central difference approximation, instabilities arise.

86 6.4 The proposed method

Figure 6.2. Top row: Left image - current interface (black), and the −γ and γ iso-contours
inside/outside the black curve. Right image - profile of function φ along the dotted line in the
first image. Bottom row: Left image - the domain of function φ, the ≥ γ area outside the
interface and the ≤ −γ area inside the interface, with the curve in the middle. Middle image -
the domain divided into tiles of equal size. Right image - the sparse domain, with inactive tiles
(completely inside or outside) removed.

This happens because, numerically, information propagates outward from the boundary. There-
fore, as suggested in [117], the correct way of discretizing the spatial derivatives is by using an
upwind scheme.

Further, using a smoother function to replace the step function in sgn(·), stability can be
improved. If the distance transform is bounded in a very narrow band, the function φ itself can
be used instead of its sign, see [68].

6.4 The proposed method

In this section we present our memory and computationally-efficient method for evolving the
level-set function. As explained in Section 6.3.1, our algorithm makes use of a sparse repre-
sentation of the the level-set function φ, and uses a tile-based storage format that only keeps
the function values in the vicinity of the zero level. As in other narrow-band methods, all other
tiles are considered to be either inside or outside, but too far from the zero level set to have any
influence on its evolution.

Our method keeps a list of active tiles, lexicographically sorted by coordinates. Moreover,
all our processing steps maintain the list of active tiles sorted in lexicographical order, such that
an expensive sorting step during each iteration is avoided. In the following section, the data
structure will be explained in further detail.

A Memory and Computation Efficient Sparse Level-Set Method 87

Table 6.1. Major operations acting on the data structure in the Sorted Tile List method.
N is the number of tiles intersecting the interface.

Algorithm Time Complexity

Append O(1)
Sequential Access With Stencil O(N)
Random Access O(logN)
Tile Management O(N)

6.4.1 The data structure
In this section we present the data structure that is central to our approach. The operations that
can be applied are the same as those on a full grid, but differ in complexity. The theoretical
complexities for various operations as derived in later sections are shown in Table 6.1.

Basically, the idea behind our structure is to have a list of tiles which are ordered lexico-
graphically by coordinate. Additionally, some basic tile management functionality is needed to
maintain the structure over time in an efficient way.

For each tile the following attributes are stored: the coordinates of the tile, a small cube of
floating point data, and a set of flags that we will call the border flags. The border flags store the
sign of the data outside the tile in every direction, in case the tile has no direct neighbour there.

In what follows, we shall call this list of tiles the active list. In the list an index or pointer
to the actual data is stored. The alternative would be to store the data in the active list itself, but
this would incur some extra copying in the management step. Also, in this way, the entire active
list might fit into the cache, and it is easier to align the tile data to a larger power of two without
wasting memory (given that the tile dimensions are powers of two).

In the following subsections, the initialization and other basic operations (e.g., append, se-
quential access within stencil, random access, tile management) associated with the data structure
are presented.

6.4.2 Initialization
To build our structure from existing data, we set up a sorted list of active tiles containing the
clamped distance transform to the interface Γ(t = 0), see also Section 6.3. Depending on the
input data it might be efficient to compute the distance transform on the whole domain, then
delete inactive tiles, and finally, sort the resulting structure. Other methods, similar to that in [36]
for converting a triangle mesh to a distance transform, already calculate a clamped distance
transform close to the surface of the objects; such methods can be used directly.

The steps performed during the initialization stage are:

• Compute the signed distance transform to the input surface. Note that it is only necessary
to compute this up to distance ±γ. This results in a sparse volume, defined only near the
interface.

88 6.4 The proposed method

• Divide the volume resulting from the first step into tiles, see Fig. 6.2.

• Add those tiles to the active list that contain parts of the active level set, i.e., locations
where −γ < φijk < γ, with φijk the level set function at position (i, j, k).

• For each tile that does not contain the interface, but shares at least one border with the tile
set defined by the active list, update the appropriate border flag of the neighbouring tiles to
signify that this tile is inside (filled with value −γ) or outside (filled with value γ).

• Sort the resulting active list in lexicographical order, if the list was not generated in this
order.

6.4.3 Append operation

The append operation adds a tile to the end of the list. This is analogous to the ’push’ operation
in [89]. As the structure is lexicographically ordered by coordinates, the new tile must have a
coordinate higher than that of the existing last tile. To add a tile, the new tile attributes are written
to the end of the active list. Hence, adding one tile has complexity of order O(1).

6.4.4 Sequential access with stencil

Sequential access can be simply achieved by moving a pointer over the list. However, as many
operations also need access to neighbouring tiles adjacent to the tile that is being iterated, and
since this requires some extra bookkeeping, we illustrate such a traversal of the active list in
Algorithm 6.1. In this algorithm, size corresponds to the number N of tiles, coord con-
tains the coordinates for each tile, B denotes the number of neighbours and neighbourhood
denotes the relative coordinates of the neighbourhood tiles. Coordinates of tiles are compared
lexicographically, and are added and subtracted component-wise like vectors. The user-defined
function iter is called for each active tile, passing two parameters: match, a bit field signify-
ing which neighbours are present and which are not, and ptr, the offset into the active list for
each neighbour (only valid if the according bit in match is set). In 2D, an example of a 32

neighbourhood definition would be ((−1,−1), (−1, 0), . . . , (1, 0), (1, 1)), and thus B would
be 8. This extends trivially to three or more dimensions.

The complexity of this algorithm is linear in the number of tiles. This can be derived in the
following way. There are B + 1 pointers, offset and ptr[0..B-1], that are initialized to
the start of the active list, at the beginning of the algorithm. With each top-level iteration of
the while loop, offset is incremented, and usually several of ptr[0..B-1] will also be
incremented at least once, as these track a certain neighbourhood around the current tile with
index offset. All pointers are incremented at most size times, after which they have reached
the end of the active list. At the end of the algorithm, offset will always be equal to size.
The other pointers will not necessarily have reached the end, so that the total number of pointer
increments is smaller or equal to (B + 1)size. As B is constant, the time complexity is thus
linear in the number of tiles.

A Memory and Computation Efficient Sparse Level-Set Method 89

Algorithm 6.1 Iterating over the sorted tile list. The function iter is called for each tile.
Input: size,coord[size],B,neighbourhood[B]

1: offset← 0 {beginning of tile-set}
2: for i = 0 to B− 1 do
3: ptr[i]← 0
4: end for
5: while offset < size do
6: cur← coord[offset] {take coord of current tile}
7: match← 0 {bit field of neighbours that exist}
8: for i = 0 to B− 1 do
9: c← cur + neighbourhood[i] {calculate coord of neighbour i}

10: while ptr[i] < size and coord[ptr[i]] < c do
11: ptr[i]← ptr[i] + 1 {track neighbour}
12: end while
13: if ptr[i] < size and coord[ptr[i]] = c then
14: match← match | 2i {if coord matches, neighbour i exists}
15: end if
16: end for
17: iter (match, ptr) {call iterator}
18: offset← offset + 1 {advance to next tile}
19: end while

The last tile iteration in a time step should write its resulting data blocks in active list order,
consecutively, and thus remove deleted blocks without the need for an extra iteration over the
data. This ensures that the tile data is always at consecutive memory locations, and ordered in
the same (lexicographical) order as the active list. Moreover, this also means that during the next
tile management step, free tiles can easily be allocated with a simple counter starting from the
end of the data, without the need for more complex memory management strategies.

6.4.5 Random access

As the active list is an ordered list of tile coordinates, an efficient method to look for a random
tile is to do a binary search, comparing at each step the desired coordinate to the coordinate at
the current position. Thus, the complexity of a random access operation is O(logN).

6.4.6 Tile management

In the tile management step, the list of active tiles is updated as follows. Tiles that are no longer
close to the zero level set are removed, and tiles bordering the zero level set that are needed in
the next time-step will be added. For each currently-active tile, it is first determined which of the
neighbouring tiles are needed in the next time step. If the interface approaches a tile border, the
tile at the other side of that border has to be present in the next time-step to continue the com-
putation. The borders of a tile that are being approached by the evolving contour, are signalled

90 6.4 The proposed method

through a set of activity flags by the time-stepping computation (as explained in Section 6.4.7).
If the activity flag for a certain border is set, a tile has to be created if it is not yet present in the
direction of that flag. If the interface has just left a certain tile, all the activity flags for that tile
will be zero. If none of the neighbouring tiles requests for the tile to be retained, it can be safely
removed to free memory.

The basic idea then is to iterate over the list of tiles, and for each tile to expand the tile set by
creating tiles in the directions whose activity flags are set. Along the way, one has to remember
which tiles are inactive and not requested by any other neighbouring tile. Such tiles will be
discarded.

A straightforward implementation of this idea would create tiles multiple times when they
are requested by different tiles, resulting in tile duplicates. It helps to look at this in another way:
as new tiles will always be direct neighbours of the current tile-set, the process can be seen as
a morphological dilation of the set of active tiles by a 33 structuring element [114]. For each
element in the dilated version of the set, it should then be determined whether to create, remove
or keep the tile at that position. This assures that new tiles will only be created at most one time.

Dilation of a sorted list

Algorithm 6.2 shows the main steps needed for iterating over a sorted tile list, while dilating it on
the fly. Here size is the number of tiles, and coord is a sorted list of coordinate vectors for each
tile. The variables B and neighbourhood define the size and coordinate tuples of the struc-
turing element. Here, in contrast to the algorithm presented in Section 6.4.4, neighbourhood
must include the middle tile (0, 0). The variable maxcoord tells where to stop iterating: a
value of (∞,∞) indicates that iteration should proceed until the entire tile-set is dilated. The
user-defined function iter is called for each tile in the dilated version of the list, passing three
parameters: cur, the current coordinate, match, a bit field signifying which neighbours are
present, and ptr, the offset into the tile list for each neighbour (only valid if the according bit in
match is set).

The algorithm works by moving the structuring element over the tile-set in lexicographical
order, continuously selecting the first tile that is intersected by it, see Fig. 6.3. In the beginning,
all pointers are initialized to 0 (the beginning of the active list). Then, the relative position of the
first tile that intersects the structuring element is chosen, and its position is set as the current one
(lines 5-11). Next, the algorithm checks if it has reached the end of the data (line 12). If not,
it builds a bit field of all the neighbours that are present (lines 15-20) and calls the iterator (line
21). At the end of the loop, all the pointers that point to matched neighbours are increased (line
22-26). Clearly, the complexity of this algorithm is linear in the number of tiles, provided that
the complexity of the iteration function iter is constant.

Tile update

Now that the algorithm for iterating over the sorted and dilated list of tiles is established, we use
it to do the actual tile management (function iter) shown in Algorithm 6.3.

A Memory and Computation Efficient Sparse Level-Set Method 91

Figure 6.3. A 3 × 3 structuring element is moved over the tile-set in lexicographical order,
dilating the set in a tile-by-tile fashion. Top-left: structuring element, center: original set con-
sisting of two active tiles, left-to-right, top-to-bottom: the structuring element starts at the first
possible position, and shifts over the set, until the end result is obtained (bottom right).

The goal of this iterator is to determine which tiles to keep, which to add and which to
remove. For this purpose, the active flags of the neighbours are examined (lines 1-6). Here
neighbour trigger is a list of bit fields that signify when a tile needs to be retained or
created, given the activity flags of the neighbours and the tile itself. We want to “trigger” a tile
when there is activity in the tile itself, or if the border facing that tile or one of the surrounding
tiles is active; this is illustrated in Fig. 6.4. There are two different cases (line 7): either this
is a currently active tile (Section 6.4.6), or this is a possibly new tile (Section 6.4.6). This is
determined by checking if the middle (current) tile exists. Here MID is the offset of the middle
tile (0, 0) in the neighbours list.

92 6.4 The proposed method

Algorithm 6.2 Iterating over a dilated version of a lexicographically-sorted list of tile coordi-
nates, maintaining the sorted order. Function iter is called for each tile.
Input: size,coord[size],B,neighbourhood[B],maxcoord

1: for i = 0 to B− 1 do
2: ptr[i]← 0 {beginning of tile-set}
3: end for
4: loop
5: cur← maxcoord {init to max. coord.}
6: for i = 0 to B− 1 do {loop over structuring element}
7: if ptr[i] < size then
8: {remember first tile in lexicographic order}
9: cur← min(cur,coord[ptr[i]]− neighbourhood[i])

10: end if
11: end for
12: if cur = maxcoord then
13: break {end of tile-set reached}
14: end if
15: match← 0 {bit field of neighbours that exist}
16: for i = 0 to B− 1 do
17: if ptr[i] < size and coord[ptr[i]] = (cur + neighbourhood[i]) then
18: match← match | 2i {if coord matches, neighbour i exists}
19: end if
20: end for
21: iter (cur, match, ptr) {call the iterator}
22: for i = 0 to B− 1 do
23: if match & 2i then
24: ptr[i]← ptr[i] + 1 {advance structuring element}
25: end if
26: end for
27: end loop

Existing tile

If the tile is a current tile, we determine whether we need to keep it, by looking at the value
of trigger (line 9). If it is set, we keep the tile and just append it to the new active list for
the next time-step, using activelist append(coord,tileid) (line 10). Otherwise, it is not added
to this list, and will not be active during the next time step. Another step that needs to be
taken when a tile is removed, is to notify the neighbours whether the removed tile was inside
or outside by appropriately setting their border flags. First, we fetch the classification (inside
or outside) using classify(x), which extracts the bit in activity flags x that classifies the
tile as either inside or outside (line 12), see Section 6.4.7. We then set the border flag using
setborderflag(p,q,v) which sets the value of border flag q of tile p to v, see Sec-
tion 6.4.1. Here reverse(p) is a function that reverses a border direction. This is needed
to set the flag of the border facing the current tile. In 3D, this is simply defined as 27 − p (line

activelist_append(coord, tileid)

A Memory and Computation Efficient Sparse Level-Set Method 93

Figure 6.4. The set neighbour trigger, in the 2D case. The current tile and its 8 neighbours are
shown, each divided into 9 areas. The marked areas are included in the set.

16).

New tile

For a tile that we are considering to create, we first look at the value of trigger (line 21). If
this tile was triggered, then it must be created, otherwise nothing is done. Next, we check the
border flags of the surrounding neighbours using borderflag(p,q), which computes the
value of border flag q of tile p, to determine how to initialize the new tile (lines 22-27). Then we
allocate a new tile using allocate tile(flag), which gives us the next free tile offset, and
fills it with values −γ or γ depending on flag. The border flags of the new tile are initialized
(lines 29-31), and finally, the tile is appended to the active list for the next time-step (line 32).

Note that, as the complexity of Algorithm 6.2 is linear in the number of tiles, and Algo-
rithm 6.3 executes a constant number of steps, the overall complexity of the tile management
stage of the proposed method is linear in the number of tiles.

6.4.7 Updating the level-set
The time-integration step evolves the level set function φ according to the generic level-set PDE
in Eq. (6.1). To do this, we make use of the sequential access with stencil algorithm described in
Section 6.4.4.

For the sake of clarity, we explain the time-integration step using our method for a specific
level set PDE (see Eq. (6.3)), using forward first order differences in time, and first and second
order differences in space with a 33 stencil. However, we also implemented fifth-order accurate
HJ-WENO discretization for spatial hyperbolic terms (see Section 6.5) and third-order accurate
TVD Runge-Kutta for time integration, the details of which can be found in, e.g., [74] and [122].
Note that larger stencils can easily be accommodated by our method if the application at hand
requires it, by increasing the tile size.

The level-set PDE we are here concerned with, consists of three terms: a data-dependent
speed term, a surface-area minimizing term (based on the mean curvature of the surface, see

94 6.4 The proposed method

Algorithm 6.3 iter function for tile management.
Input: cur, match, ptr, B, neighbourhood[B], neighbour trigger[B],

activeflags[], index[]
1: trigger← 0 {default to 0, unless triggered}
2: for i = 0 to B− 1 do
3: if match & 2i and (activeflags[ptr[i]] & neighbour trigger[i]) then
4: trigger← 1 {neighbour i has contour approaching this tile}
5: end if
6: end for
7: if match & 2MID then {current tile already exists}
8: tileid← index[ptr[MID]]
9: if trigger then {if triggered, keep tile}

10: activelist append(cur,tileid)
11: else {otherwise, remove it}
12: flag← classify(ptr[i]) {classify as inside or outside}
13: for i = 0 to B− 1 do
14: if match & 2i then
15: {notify neighbours of removal}
16: setborderflag(index[ptr[i]], reverse(i), flag)
17: end if
18: end for
19: end if
20: else {current tile doesn’t exist yet}
21: if trigger then {if triggered, create tile}
22: flag← 0 {determine if new tile should be inside or outside}
23: for i = 0 to B− 1 do
24: if match & 2i then
25: flag← flag | borderflag(index[ptr[p]],reverse(p))
26: end if
27: end for
28: tileid← allocate tile(flag) {create and init. new tile}
29: for i = 0 to B− 1 do {init. border flags}
30: setborderflag(tileid, i, flag)
31: end for
32: activelist append(cur,tileid)
33: end if
34: end if

Eq. (6.2)), and a rescaling-speed term (see Section 6.3.2) to keep the level set as closely as
possible to a signed distance transform, i.e.,

∂φ

∂t
= −F (x, t) |∇φ|+ εκ |∇φ|+ sgn (φ) (1− |∇φ|) . (6.3)

The data-dependent speed term F can vary in both position and time. The strength of the
curvature-based term (the second term) is determined by a constant ε, which is usually fixed.

A Memory and Computation Efficient Sparse Level-Set Method 95

The rescaling-speed term completely depends on the sgn(·) function used, which otherwise is
free of parameters, see Section 6.3.2.

When discretizing this equation, the first and third terms must be approximated using an up-
wind scheme, which satisfies the entropy condition [117]. The curvature-based term can simply
be approximated using central differences. Initially, the first order approximations to the spatial
derivatives of the level set function φ at each position (i, j, k) in the tiles are calculated: cen-
tral differences D0x

ijk, D
0y
ijk, D

0z
ijk, backward differences D−xijk ,D−yijk, D

−z
ijk and forward differences

D+x
ijk ,D+y

ijk, D
+z
ijk. Central differences are necessary for the computation of the curvature term,

whereas backward and forward ones are needed for the upwind scheme. For evaluating the cur-
vature we also need to compute central difference approximations to all second order spatial
derivatives, D0xx

ijk , D0xy
ijk , . . . , D0zz

ijk .
To compute the curvature we start from Eq. (6.2). The gradient of φ is approximated by

central differences, i.e., ∇φ ≈ (D0x
ijk, D

0y
ijk, D

0z
ijk). The central difference approximation of the

gradient magnitude is denoted by∇0, i.e.,

∇0 =
(
D0x
ijk

2
+D0y

ijk

2
+D0z

ijk
2
) 1

2

By approximating all first and second order derivatives in Eq. (6.2) one finds the following ap-
proximation for the curvature κ:

κ ≈ 1

2

∑
α=x,y,z

(
D0αα
ijk

∇0
−

D0α
ijk

(∇0)3

∑
β=x,y,z

D0β
ijkD

0βα
ijk

)
. (6.4)

Three approximations of the gradient magnitude need to be computed: the central difference
approximation∇0 as defined above, and two other ones for the upwind scheme [117], i.e.,

∇+ =
[

max 2
(
D−xijk , 0

)
+ min 2

(
D+x
ijk , 0

)
+ max 2

(
D−yijk, 0

)
+ min 2

(
D+y
ijk, 0

)
+ max 2

(
D−zijk, 0

)
+ min 2

(
D+z
ijk, 0

)] 1
2
,

∇− =
[

max 2
(
D+x
ijk , 0

)
+ min 2

(
D−xijk , 0

)
+ max 2

(
D+y
ijk, 0

)
+ min 2

(
D−yijk, 0

)
+ max 2

(
D+z
ijk, 0

)
+ min 2

(
D−zijk, 0

)] 1
2
.

All calculations above need a 33 stencil centered around the current element. At the borders
of a tile, values from neighbouring tiles are required. These values can be fetched using the
neighbour pointers provided by the algorithm in Section 6.4.4. If a neighbour tile is not active at
the moment, a dummy tile filled with either −γ (inside) or γ (outside) is used, depending on the
border flag in the direction of the required tile.

The value at the current position for the next time-step is then calculated using Euler integra-
tion in time, i.e.,

φn+1
ijk = φnijk + ∆t S,

96 6.4 The proposed method

Figure 6.5. Guard bands in the time-step iteration guarding the borders of a 4× 4 tile, used to
set activity flags for corners 0, 2, 6, 8; borders 1, 3, 5, 7; and center 4.

in which ∆t is the time-step and S is defined as the following sum of speed terms:

S =−
(
max (Fijk, 0)∇+ + min (Fijk, 0)∇−

)
+ (ε κnijk∇0)

+ max
(
sgn
(
φnijk
)
, 0
) (

1−∇+
)

+ min
(
sgn
(
φnijk
)
, 0
) (

1−∇−
)

,

where the sign of Fijk determines whether the motion is inward or outward w.r.t. the interface,
and κnijk is the central difference approximation to the mean curvature at the current position.

During these computations, the old set of tiles from the previous time-step needs to be read,
while the values for the new time-step have to be written. To accomplish this, we temporarily
need to double the memory requirements for each tile. After the values for the next time-step
have been computed for all tiles, the old values are discarded, and the whole process is repeated.

Activity flags

While calculating the level set function for each element in the tile, an activity flag for each
border, corner and central part is maintained using guard bands (see Fig. 6.5). This flag is set if
the result in that band is between the two cut-off values, that is −γ < φijk < γ. The stored flags
are used in the tile management step (Section 6.4.6), which determines which tiles need to be
activated and which can be deactivated.

In case that all the resulting activity flags are zero, meaning that there is no activity in a tile
at all, the tile can be classified as entirely inside (φijk = −γ) or entirely outside (φijk = γ). This
classification is stored with the activity flags, and used to update the border flags of neighbouring
tiles when the tile is removed.

A Memory and Computation Efficient Sparse Level-Set Method 97

6.5 Results
In this section we present both numerical and performance-related results that show the strengths
and weaknesses of our new approach, compared to previous methods.

In [89], the DT-Grid method was already compared to other state-of-the-art level-set data
structures, and it was shown that this method achieves the highest performance. Therefore, to
measure the relative performance of our new method, we implemented the DT-Grid method [89]
and used it as a reference. In all comparisons in this section, the same level-set simulation code
was used for the computational routines which are common to both our method and DT-Grid, so
as to fairly compare the performance of both representations. Only in the indicated cases, our
method was additionally optimized using Intel SIMD instructions (SSE2) which compute four
floating point values at once, in a single operation. The machine used for benchmarking was an
Intel Core 2 Quad 2.4 GHz, running a recent 32-bit Linux kernel; the compiler used was GNU
g++ 4.2.4.

6.5.1 Mean curvature flow

In the first experiment, we simulated a sphere collapsing under mean curvature flow. The sim-
ulation was performed on a 2563 grid. The simple discretizations from subsection 6.4.7 were
used. The number of time-steps it took for the sphere to collapse to a point and then disappear
was equal for both the DT-Grid and our method, confirming that the evolution of the sphere was
the same. The complete simulation took 2674 seconds using the DT-Grid and 429 seconds using
our method, thus resulting in a speed-up factor of about 6.2.

6.5.2 Volume-conserving mean curvature flow

Next we benchmarked our algorithm by performing the simulation of an extruded spiral evolv-
ing under volume-conserving mean curvature flow [99], see Fig. 6.6. The PDE describing the
evolution is

∂φ

∂t
= (κ− κ)|∇φ|, (6.5)

where κ is the mean curvature of the level sets in (−γ, γ) and κ is the average curvature of
the interface. To approximate Eq. (6.5), second-order central differences (see subsection 6.4.7
and Eq. (6.4)) were used for the parabolic term (κ|∇φ|) and the fifth-order accurate HJ-WENO
scheme [94] for the spatial hyperbolic term (κ|∇φ|). The average curvature of the interface κ is
computed by

κ =

∫
Γ
κ δ(φ)|∇φ| dx∫

Γ
δ(φ)|∇φ| dx

, (6.6)

where the delta function is approximated by [99]

δ(φ) =

{
1
2ε

(1 + cos (πφ
ε

)) if φ < ε
0 otherwise

, (6.7)

98 6.5 Results

Figure 6.6. Left-to-right, top-to-bottom: snapshots of the volume-conserving mean curvature
flow simulation by the Sorted Tile List method, taken every 100 time steps. The final image
shows the result after 1700 time steps.

where ε is a parameter proportional to the grid spacing. Finally, a third-order accurate TVD
Runge-Kutta time-stepping method [122] was employed. The simulation was performed on a
1283 grid, and the spiral initially had a radius of 50 and a depth of 40.

In the SSE-optimized version of our method, we used aligned loads to fetch stencil values
from the tile set and perform all stencil computations on four values at once. The tile-based
memory storage format of our method allows for this vectorization to be done easily: the only
change in the computation code was to replace the occurrences of float with vec4, an overloaded
type that represents four floats at once. These optimizations are not feasible for DT-Grid, as the
extra work spent in collecting stencil values from the voxel-centric storage and storing them into
aligned memory areas would outweigh the gain of computing four floating point values at once.

Timings for the first 1000 iterations are shown in Table 6.2. It can be seen that our method is
about three times faster than the DT-Grid method, and the SSE-optimized version of our method
is about 7.2times faster. Figure 6.7 shows the computation time per time step, for DT-Grid,
our method, and our SSE-optimized method. As can be seen, the time usage of our method is
almost constant, as voxels are grouped in tiles and only full tiles are switched on and off for

A Memory and Computation Efficient Sparse Level-Set Method 99

Table 6.2. Performance comparison of level-set data structures.

Method Time (s)

DT-Grid 680.0
Sorted Tile List method (tile size 43) 240.0
Sorted Tile List method (tile size 33) 230.0
Sorted Tile List method (SSE2, tile size 43) 80.1

0 200 400 600 800 1000
Timestep

0

200

400

600

800

T
im

e
 (

m
s)

DT-Grid
Our method (plain)
Our method (SSE)

Figure 6.7. Computation time per time step, for DT-Grid, our method, and our SSE-optimized
method.

computation. Thus, the amount of computations differs less from time step to time step, and is
consistently lower than that of DT-Grid. The graph of the SSE-optimized method follows the
graph for the non-optimized method.

100 6.5 Results

0 1000 2000 3000 4000 5000 6000 7000
Timestep

0

1

2

3

4

5

6

S
iz

e
 (

M
B

)

DT-Grid
Our method

Figure 6.8. Memory usage of our method and the DT-Grid method for the same level set
computation (for comparison, a full 2563 grid would take 67.1Mb of memory).

6.5.3 Memory usage
We also compared the memory usage of our method (using tiles of size 43 voxels) and the DT-
Grid method, for the same simulation as in section 6.5.1, see Fig. 6.8. During the simulation,
the size of the interface shrinks to a point, and then around time step 6500 it disappears. From
Fig. 6.8 it can be concluded that the memory usage of our method is a factor of about 2.5 larger
than that of DT-Grid, seemingly independent of the size of the interface.

6.5.4 Periodic velocity field advection
Similar to DT-Grid, our method has a low memory footprint, allowing large computational grids,
or conversely, large resolution level-set representations. Enright et al. [34] proposed an experi-
ment to demonstrate the excellent volume-conservation property of their particle level set (PLS)
method. Whereas they used a 1003 grid and were able to resolve the interface, we ran the exper-
iment on a 10243 grid, similar to Nielsen and Museth [89] for their DT-Grid method. Fig. 6.9
shows some snapshots taken during the simulation. As can be seen, our method can fully resolve
the interface on a 10243 grid, similar to the DT-Grid method. The peak memory usage of our

A Memory and Computation Efficient Sparse Level-Set Method 101

Figure 6.9. Simulation of periodic velocity field advection, as proposed by Enright et al. [34].
Our method allows high resolution level set representations (a 10243 grid was used for this
experiment). Left-to-right, top-to-bottom: snapshots taken during the simulation.

method was 149 MB, which is about twice as much as for DT-Grid, whereas a full-grid method
would need more than 4 GB of memory, see [34, 89] for further details.

In cases where the velocity field cannot be evaluated analytically (as is the case for Enright’s
test), or at arbitrary grid locations, standard interpolation methods such as trilinear interpolation
have to be used. Further, if the velocity field is defined on a grid with a different resolution than
the level set grid, resampling followed by interpolation can also be employed.

To further test the accuracy of our method, we successively increased the grid resolution and
observed the maximum time td that can be achieved without deteriorating the developing thin
sheets. The grid resolution G was set to G = 1283, 2563, 5123, 10243 and the period of the field
was set to T = 5, so that the maximum deformation takes place when the simulation time t
becomes td = T/2. The results of this experiment are shown in Fig. 6.10. As also found in [?]
and shown in Fig. 6.10, a grid resolution of 5123 is sufficient to accommodate the deformation,
provided that the period of the field is at most T = 3.0. Note that, periods as large as T = 4 are
also possible if the grid resolution satisfies G ≥ 10243.

102 6.5 Results

Figure 6.10. Maximum deformation versus increasing grid resolution for Enright’s test. Left-
to-right: snapshots at maximum deformation time td = 0.77, 1.1, 1.55, 2.05 obtained at in-
creasing grid resolutions G = 1283, 2563, 5123, 10243.

6.5.5 Tile size considerations
The drawback of our approach is that it has a larger memory overhead than DT-Grid, because of
the granularity of the tiles. This overhead depends on the tile size – up to a point, the tile size is
a compromise between computational efficiency and memory overhead. Choosing a tile size of
33 voxels hampers performance as it becomes inconvenient to use SSE SIMD instructions. The
use of even smaller tiles would make the tile management overhead larger and similar to that of
DT-Grid (see below), as more smaller active tiles need to be managed. Choosing a larger tile size
results in both memory and computation overhead, as more values are computed unnecessarily.

We have also performed the experiment of subsection 6.5.1 with 33 tiles and without SIMD
optimizations, and did not observe any significant difference with regard to speed, compared to
the case when 43 tiles were used. Thus, in this case, one can conclude that the gain due to less
numerical computation was offset by the added tile management overhead.

6.5.6 Tile management overhead
In practice the DT-Grid method has the advantage that the interface can be represented more
sparsely. This implies less memory usage and less time spent on actual computation, e.g., no
need to compute 43 voxels for those tiles in which only one voxel of the interface resides. Yet,
DT-Grid adds significantly more overhead for maintaining the stencils. The following are some
of the requirements of DT-Grid:

• an iterator for each stencil voxel is needed, which means 39 instead of just the 27 that we
have for the surrounding blocks (HJ-WENO case);

• the iterators have to be advanced after each computed voxel; in our case, time can be spent
entirely on computing the values of a tile before advancing them;

• DT-Grid uses 9 arrays (three for each dimension), while our method uses only a flat sorted
list, making it easier to append (“push”) without having to manage various connected com-
ponents.

A Memory and Computation Efficient Sparse Level-Set Method 103

Quantifying the exact impact of the tile management overhead is quite complex in practice. This
overhead is always lower for our method than for DT-Grid, as the number of tiles is always
smaller (assuming the tile size is not 13) than the number of voxels. Furthermore, assuming a tile
size of 43, the overhead can be 64 times less. This would happen only in the specific situation that
DT-Grid would fill up every 43 tile entirely. In this case, the memory usage of DT-Grid and our
method would also be (approximately) the same. In realistic cases, the interface will only occupy
part of the tiles, and DT-Grid would only store voxels close to the interface. The average number
of voxels per tile that are part of the interface will also be substantially larger than 1, as the level
set embeds a 2-D surface in 3-D space. Simplistically spoken, a tile embedding an axis-aligned
plane would use 42 of the 43 voxels, implying 4 times overhead. Experimental measurements
using profiling tools revealed this factor to be consistently around 2.8 (bigger is worse), which
approximately coincides with the memory overhead that we measured in subsection 6.5.3. This
implies that the effective savings in tile management overhead will be a factor of about 64

2.8
≈ 23.

6.5.7 Discussion of our method

As our method is a hybrid between sparse methods with data structures for efficient level set
computation such as DT-Grid on the one hand, and dense representation such as the full grid-
based method on the other, it has favorable properties of both.

First, the speed and optimization potential of our method is crucial. As the main data struc-
ture is a sorted list processed in order, cache coherence can be maximized. Also, the tile size can
be set so that tiles start at memory page boundaries, thus minimizing memory transfer overhead.
Furthermore, as the values for a tile are stored together, and there is little data dependency (con-
ditional logic) in the computation of the values for a tile, fine-grain parallelism in the form of
SIMD instructions can be utilized to compute up to a whole tile of values at the same time.

Hierarchical structures such as octrees and DT-Grid can be quite intricate, while our method
is much more straightforward to implement. As tiles are computed in a fashion similar to the
full-grid approach, this constitutes an advantage when starting from a grid-based or narrow-band
implementation. The only major difference is that an active list has to be maintained around the
level set surface. There are no special structures with pointers that need to be maintained, which
also facilitates hardware implementations.

The memory locality within tiles can also increase the performance of methods used to visu-
alize interfaces, such as the Marching Cubes algorithm, as finding neighbour values is very fast.
Here too, fine-grain parallelism can be used, for example to find the zero crossings for the entire
tile at once.

6.5.8 Parallelization over multiple CPUs

Our method is well suited for both fine and coarse grain parallelism. Within a tile, all values
can be computed at once, which we demonstrated above by using SIMD instructions. Secondly,
all the tiles could in principle be computed at the same time, by parallelizing this process over
multiple CPUs.

104 6.6 Conclusions and future work

Moving the stencil of neighbouring tiles over the data structure (Section 6.4.4) is inherently
a serial operation. This has to be taken into account when dividing the computational work over
processors. For example, we could index into the structure using random access (Section 6.4.5),
and use this to initialize the neighbour pointers for each processor once at the start of the iteration
process.

The other challenge lies in parallelizing the tile management step, as the active list has to be
maintained lexicographically sorted by coordinate. This could be achieved by allocating a part
of the active list to each processor, having it process the dilation for that part of the list, then
collecting the results in the correct order into a new active list.

6.6 Conclusions and future work
In this chapter we have presented an efficient data structure with associated operations for the
level set representation, and compared the resulting method with the current method of choice,
the DT-Grid method. With regard to performance, given the same numerical simulation code,
our method turned out to be faster by a significant factor. After fine-grain parallelization using
SIMD instructions the performance gain was further increased to a factor of 8.5.

As our method is also well suited for coarse-grain parallelization, we are in the process of
devoting further work to various possibilities for leveraging highly parallel architectures such as
GPUs. It would also be interesting to see whether it is possible to reduce the larger memory
requirements of our method, without sacrificing one of its prominent advantages, namely, low
data structure management overhead.

To be submitted.

Chapter 7

Real-Time Sparse Level-Sets on Graphics
Hardware

7.1 Introduction
Since its inception [98], the level set method has become the favorite technique for capturing
and tracking moving interfaces, and found a host of applications in a wide variety of research
fields ranging from chemistry and physics to computer vision and graphics. The basic idea is
to represent the dynamic interface (e.g., contour or surface) implicitly and embed it as the zero
level set of a time-dependent, higher-dimensional function. Evolving the interface with a given
velocity in the normal direction then becomes equivalent to solving a time-dependent PDE for the
embedding level set function. The main advantages of the level set method are that it allows the
interface to undergo arbitrary topological changes and conveniently provides intrinsic geometric
properties such as normal and curvature information.

Unfortunately, although the level set method is well suited for tracking highly deformable
models such as mud, water and smoke in accurate, physically-based simulations [24, 35, 77], its
use for real-time interactive systems has been hampered due to the high computational demands.
The cost which has to be paid for the flexibility offered by the level set method is of twofold
nature: first, computationally, one has to solve the level-set PDE in a higher-dimensional space
than that of the embedded interface, and secondly, the memory requirements are higher than the
size of the interface, as one needs to explicitly store a uniform Cartesian grid for solving the level
set PDE. To address these issues, a number of techniques have been proposed, see Section 7.2.
These methods rely on the fact that it suffices to solve the PDE only in the vicinity of the interface
in order to preserve the embedding. Thus, the computational requirements scale with the size of
the interface.

We leverage the increased computing power of the GPU to achieve real-time simulations
based on level sets. This requires specially designed data structures, as most CPU methods rely
on complex data structures that do not fit well in the streaming model of GPU computing. Al-
though interactive level set methods on the GPU do exist, they are constrained to small grid
resolutions of typically 1283 voxels, see Section 7.2. The Sorted Tile List (STL), introduced
recently by [144], constitutes an efficient data structure for tracking dynamic interfaces through
the level set method. Inspired by the increased potential for parallelism of the STL method,

106 7.2 Previous and related work

we present efficient and scalable parallel algorithms for the level set method on graphics hard-
ware, see Section 7.3. Although we focus on Nvidia’s Compute Unified Device Architecture
(CUDA) parallel programming model in our GPU implementation, our algorithms can certainly
be adapted to OpenCL [63], the upcoming open standard for parallel and GPU computing, and
even to DirectX 11 Compute Shaders.

Our fast GPU method brings the use of level set methods into the realm of interactive sim-
ulations. To demonstrate its effectiveness, we consider two well-known graphics applications:
surface reconstruction and free-form level-set surface editing.

Specifically, the main contributions are:

• A highly efficient, tile-based, sparse-grid method for the level-set representation, which works
in any number of dimensions on grids of unbounded size and runs entirely on graphics hard-
ware or other highly-parallel computing platforms.
• Scalable parallel algorithms for iterating and maintaining the proposed GPU data structure,

enabling efficient simulations based on level sets, at high grid resolutions.
• An efficient rendering method, based on marching cubes [76] that displays implicit surfaces

defined on the sparse volumetric grid in real-time, attaining high performances and small mem-
ory footprints for large volumetric grids.
• A novel, multi-resolution method for surface reconstruction based on GPU level sets, which

compares favorably with existing state-of-the-art methods.

Finally, our free-form level-set surface editing application performs at interactive rates on
large models, obtained, e.g., through our surface reconstruction method.

7.2 Previous and related work
As the level-set method is a tremendously popular approach for tracking moving interfaces, there
has been continuous interest in developing improved algorithms to address the computational
issues involved. Here we focus our brief review only on closely-related methods and state-of-
the-art results. For some general issues in designing GPU-based algorithms, see [67, 164].

7.2.1 Efficient level set methods on the CPU

The computational issue was first addressed with the introduction of the narrow-band schemes [2,
99,153], which restrict the computations to a small vicinity around the zero level set representing
the deforming interface. Although narrow-band methods improve computational efficiency, they
still need to explicitly store a full grid and additional data structures. Thus, such methods have
storage complexities scaling with the size of the grid. Quadtree and octree-based methods [77,
84,127] do achieve smaller memory footprints, but the non-uniform discretizations limit the class
of problems which can be tackled to hyperbolic ones [89]. An alternative approach for reducing
memory requirements, called the “Sparse Block Grid” method, was presented in [13]. In 3D, this
method divides the volume of size n3 into small blocks of size m3 voxels each. A coarse grid

Real-Time Sparse Level-Sets on Graphics Hardware 107

of size (n/m)3 stores pointers to blocks that intersect the interface. Although this method has
non-optimal storage complexity, it maintains constant access time similar to the full-grid method.

7.2.2 Level set GPU methods

Because the computing power of GPUs is currently increasing at a faster pace than that of CPUs,
there have been several efforts to accelerate level set simulations by using graphics hardware.
The first GPU implementation of level sets is due to Rumpf and Strzodka [111]. More recently,
parallel implementations of particle [27] and marker [83] level sets were also proposed. These
methods achieve 15 and 24 fps respectively, on full grids of size 1283 voxels. We stress that both
methods are more computationally involved than the pure level-set method, and thus a direct
comparison with regard to efficiency is unfair.

To the best of our knowledge, the only memory-adaptive model for the level set representation
on the GPU is due to Lefohn et al. [68]. In this method, the domain is decomposed into small 2D
tiles, of which only the tiles with non-zero derivatives are stored on the GPU. A look-up table
spanning the entire domain stores a pointer to the data for every tile. Memory management is
performed by transferring a bit-vector image of about 64 kB from the GPU in every iteration,
after which the CPU loads and unloads tiles based on their necessity for the computation during
the next iteration.

7.2.3 Sparse CPU methods

Recently, Nielsen and Museth introduced the so-called Dynamic Tubular Grid (DT-Grid) [89], a
recursive, compressed level-set representation inspired by the compressed-row-storage technique
used to represent sparse matrices. The authors show that the memory requirement of DT-Grid is
optimal, i.e., it is proportional to the size of the interface. Moreover, their experiments showed
that the 3D DT-Grid is faster and more memory efficient than state-of-the-art octree-based ap-
proaches.

Huston et al. [54] use hierarchical run-length encoding (RLE) in a dimensional-recursive
fashion to encode the domain in a series of runs, each associated with a specific run code. Regions
away from the narrow band are encoded to just their sign representation, while the narrow band
is stored in full precision. Although this method is more flexible than DT-Grid, the price paid is
a slight increase in computation time and memory usage, compared to the DT-Grid.

Similar to [13, 68], the Sorted Tile List (STL) method [144] divides the domain into fixed-
size tiles, such that each tile represents a part of the domain of the level set function φ. Tiles
outside the narrow-band are discarded. The remaining narrow-band tiles form the so-called
active set. A key aspect of the STL method is that the active set is just a list of (active) tiles,
lexicographically ordered by coordinates. This allows finding the active neighbouring tiles of
a given tile in constant time, such that updating the level-set values of all tiles is linear in the
number of active tiles. The STL method was found to be faster than the recent approaches
mentioned above [13, 54, 89] and more importantly, the algorithm can greatly benefit from both
fine- and coarse-grain parallelization by leveraging SIMD and/or multi-core configurations.

108 7.3 Proposed GPU level set method

7.2.4 Surface reconstruction
Surface reconstruction from unorganized point clouds has been intensively studied. For recent
surveys see [10, 56, 62, 163] and references therein. Despite the increased availability of com-
modity parallel platforms, there has been very little work on parallel algorithms for surface re-
construction. Only Zhou et al. [163] and Bolitho et al. [10] implement the Poisson method [62]
on the GPU, and on shared and distributed-memory parallel platforms, respectively. In [163]
significant speedups were obtained on the GPU at small grid resolutions. As pointed out by
Bolitho et al. [10] a limitation of this method is that it maintains the entire octree and additional
data structures in GPU memory, thus drastically limiting the maximum resolution. Moreover,
the method is more susceptible to noise than the original one, due to some computational simpli-
fications that were introduced. Finally, the results in [10] indicate that the Poisson method scales
well on distributed-memory parallel computers and badly on shared-memory architectures.

7.3 Proposed GPU level set method
We first give a brief overview on level sets, and provide a brief summary of the CPU STL
method [144]. Then we introduce our fast GPU method, based on the CUDA programming
environment [70].

7.3.1 Generic level set equation
In the level set method, a closed (d−1)-dimensional hyper-surface ΓΓΓ(t = 0) is implicitly defined
as the zero set of a d-dimensional Lipschitz continuous function φ(x, t = 0) : Rd → R, e.g.,
the signed distance to ΓΓΓ(t = 0), with x ∈ Rd. A generic equation for φ(x, t), representing the
evolution of ΓΓΓ(t), is [98]

∂φ

∂t
= −F (x) |∇φ| −U(x, t) · ∇φ+ ακ |∇φ| , (7.1)

where α is a constant, n = ∇φ/ |∇φ| denotes the normal and κ = ∇·n is the mean curvature of
the hyper-surface. Accordingly, the interface (hyper-surface) moves under three simultaneous in-
fluences. The first right-hand side term, involving the position-dependent signed scalar function
F (x), defines its motion in the normal direction. Second, it is being passively convected by an
external velocity field U(x, t), whose direction and strength depend on position and (possibly)
time, but not on the front itself. Third, the interface collapses with a speed proportional to its
curvature. Since during the simulation, φ should be maintained close to a distance transform, an
additional rescaling-speed term sgn(φ)(1− |∇φ|) [68] is used, which enforces |∇φ| = 1.

The curvature term is discretized using central differences, whereas all the other terms (in-
cluding the rescaling-speed term), are discretized using upwind differences in the appropriate
direction. Here we use either first-order upwind differencing, or the fifth-order accurate HJ-
WENO scheme [74] ensuring less numerical dissipation. For the time derivative we either use
forward differences, or the third-order accurate TVD Runge-Kutta scheme. Unless mentioned
explicitly, we use the simpler numerical schemes.

Real-Time Sparse Level-Sets on Graphics Hardware 109

Figure 7.1. Sparse tile-based representation in 2D. Top row, left-to-right: interface (black),
and the −γ (red) and γ (green) iso-contours; profile of level-set function φ. Bottom row, left-
to-right: domain with φ ≥ γ (green), and φ ≤ −γ (red); domain divided into tiles; sparse
domain with inactive tiles (completely red or green) removed.

7.3.2 CPU STL method

The Sorted Tile List (STL) method [144] divides the domain into fixed-size tiles, such that each
tile represents a part of the domain of the level set function φ. Tiles outside the narrow-band,
with values outside the range (−γ, γ), are discarded, see Fig. 7.1. The remaining narrow-band
tiles form the so-called active set. A key aspect of the STL method is that the active set is just
a list of (active) tiles, lexicographically ordered by coordinates. This allows finding the active
neighbouring tiles of a given tile in constant time, such that updating the level-set values of all
tiles is linear in the number of active tiles.

As the interface evolves, tiles that are no longer close to the zero level set have to be removed,
and new tiles needed during the next time step must be added to the list of active tiles. This is
accomplished in the so-called tile-management step, whose basic idea is as follows. For each
currently-active tile, it is first determined which of the neighbouring tiles are needed in the next
time step. The borders of a tile that are being approached by the evolving interface are signalled
through a set of activity flags. If the activity flag for a certain border is set, a tile has to be created
if it is not yet present in the direction of the border. If the interface has just left a certain tile, all
activity flags for that tile are set to zero. If none of the neighbouring tiles request for the tile to
be retained, it is safely removed from memory. During tile management an expensive re-sorting
step is avoided by carefully tracking newly added and removed tiles.

For full details on the STL method we refer to [144].

110 7.3 Proposed GPU level set method

7.3.3 GPU sparse level sets
Although the STL method maps well to the CPU computational model, since it relies on tiles to
represent the narrow band, an analogous, sparse, tile-based GPU method is more complex. For
example, in the STL method, tile management is performed in one traversal of the active list. In
contrast, to achieve good memory throughput and thus efficiency, our GPU method performs five
passes, using more conceptually-involved algorithms for iterating over the active list.

First we introduce the tile-based data structure that is central to our approach and then we
present the details of both computation and tile-management steps.

Data structure

Considering the level set method, the most important means of achieving high performance with
CUDA is to optimize memory throughput. One needs to make sure that data structures are laid
out efficiently in memory and (slow) global memory transfers are minimized. In SIMD-like ar-
chitectures, Array of Structures (AOS) approaches are generally less efficient than Structures of
Arrays (SOA), in the common case in which steps of the algorithm use a subset of the structure
fields. In an AOS, the entire record would have to be read into cache, while in a SOA a consecu-
tive span of a certain field can be read and processed. Even though the global memory in CUDA
is uncached, the reasoning still applies because the device writes and reads quantities of 64 or
128 bytes at once. The consecutive memory locations must be simultaneously accessed by the
threads (scalar execution units). This is called memory access coalescing [92], and it represents
one of the most important optimizations in CUDA.

The main data structure consists of the following arrays, see Fig. 7.2:

• The active list is an array of 8-byte structures serving as storage for two integers: position
(concatenated tile coordinates) and tile id (an index into other arrays holding, e.g., the data or
border flags of this tile). This structure is provided to CUDA kernels as a 1D int2 texture for
cached read access.
• The data array, stores values of function φ for each tile. We use tiles of size 43 voxels, stored

in single precision, as this setting represents the best tradeoff between efficiency and memory
footprint. Thus, the data array stores 43 × 4 = 256 bytes per tile, which can be accessed con-
veniently with coalesced global memory accesses. Depending on the time-integration scheme
used, two or three data arrays have to be maintained on the GPU, see subsection 7.3.1.
• The array of border and activity flags of each tile. This array stores the sign of the data outside

a tile in each of the 26 directions, in case the tile has no direct neighbour there. The overall
activity bit signifies whether a tile is active or not during the next iteration. This structure is
provided to CUDA kernels as a 1D int texture.
• An array of unused indices, the free stack, is also maintained, in the form of a stack of tile id

values.

Tile coordinates are stored as 32-bit integers, as this makes lexicographic comparison very
efficient, and one can apply neighbour offsets by simple addition and subtraction operations.
In 3D, we have at our disposal only 10 bits on average for each dimension, which limits the

Real-Time Sparse Level-Sets on Graphics Hardware 111

0 4 51

xx xx xx xxxx

xx xx xx xxxx

x
y

Active tiles

a) b)

Top11

8

1

Free stack

Position

Tile id

62 3

Data Array

Flags Array

c)Active list Array

(1,0)

0

(3,2)

6

(1,3)

4

(0,1)

3

(2,3)

5

(2,1) (0,2)

2 9

(3,2)
4

(2,1)
2

(1,0)
0

(0,1)
1

(0,2)
3

(1,3)
5

(2,3)
6

Lexicographic order

Figure 7.2. GPU data structures (arrays). a): active tiles with numbers representing tile
positions and indices in the active list, according to the lexicographic order by tile position; b):
the stack of free tile identifiers; when a tile becomes inactive, its tile id is pushed on the stack;
conversely, if a new tile has to be created, its tile id is popped from the stack; c): the active list
contains tile positions and identifiers; The tile id is used as index in the data and (border) flags
arrays.

maximum size of the volume to (210 × 4)3, using 43 tiles. If larger volumes are needed, 64-bit
position identifiers could be used at the expense of some speed and storage space.

When a tile becomes inactive, its identifier is pushed on the free stack, and when a tile
becomes active, an identifier is popped from the stack, see Fig. 7.2. Only if the stack is empty,
new memory must be allocated by the CPU. Maintaining a stack in CUDA is non-trivial, as it
must be accessible by all threads in parallel, and there is no way to synchronize thread accesses
across blocks. Although it is possible to use atomic integer operations to maintain a stack pointer,

112 7.3 Proposed GPU level set method

Neighbour
pointers

Active tile
Neighbour

pointers

Active tile

CUDA block

CUDA shared memory

Tile and potential
neighbouring tiles neighbouring tiles

Tile and potential

ThreadsThreads

Unit 1 Unit n

Figure 7.3. Tile iteration with access to neighbouring tiles. Each thread of a unit tracks the
pointer of a neighbouring tile. A CUDA block consists of multiple units.

this results in a lot of added communication with the global memory. A better option is to count
the number of push and pop operations that each thread needs to perform, and then use a parallel
prefix-sum algorithm [47] to make sure each thread only accesses its own part of the stack.

Overall flow

An efficient CUDA algorithm divides the work between CUDA blocks and threads in a way that
yields minimal overhead. For this, we introduce the concept of units, i.e., groups of threads
working together on one tile at a time. These consist of a number T of threads at least equal to
the number N of neighbouring tiles (N = 26 in 3D), rounded to the closest power of two. Each
thread inside the unit tracks the pointer of a neighbouring tile. A CUDA block can consist of a
multiple of these units, which act independently of each other, see Fig. 7.3. The total number of
units is chosen so as to saturate all GPU multiprocessors.

Each level-set simulation step consists of one computation (subsection 7.3.3) and one tile
management (subsection 7.3.3) substep. During the computation step, the active tiles are visited
and the level set PDE is used to update function φ. In the tile management step, new tiles are
created and existing tiles are either removed or kept.

Real-Time Sparse Level-Sets on Graphics Hardware 113

Algorithm 7.1 Iterating over the sorted tile list with T parallel threads and access to the N = 26
potential neighbouring tiles. Function iter is called for each tile by each of the first N threads,
T ≥ N .
Input: unit {unit number}, sub {thread in unit}, size {active list size}, coord[size] {tile

coords}, neighbourhood[N] {neighbour coords}
1: offset← unit ∗ size/num units {begin of work for this unit}
2: end← (unit+ 1) ∗ size/num units {end of work}
3: ptr← BSEARCH(size, offset, sub) {locate neighbour, binary search}
4: while offset < end do
5: cur← coord[offset] {take coord of current tile}
6: c← cur+ neighbourhood[sub] {neighbour coord for thread}
7: while coord[ptr] < c do
8: ptr← ptr+ 1 {track neighbour}
9: end while

10: match← coord[ptr] = c {if coord matches, neighbour exists}
11: iter (match, ptr, cur, unit, sub) {call iterator}
12: offset← offset+ 1 {advance to next tile}
13: end while

Parallel tile iteration with compute stencil

Tile iteration with compute stencil, i.e., with access to neighbouring tiles, is an essential build-
ing block of our method, as it is used for updating the level set function and for rendering the
deformable surface (subsection 7.3.4). Its pseudo-code is given in Algorithm 7.1. First, on a
coarse-grained level, the active list is divided evenly into parts and each part is assigned to a unit
(line 1 and 2). Secondly, each thread of a unit assumes responsibility for one neighbour pointer,
see Fig. 7.3.

At the beginning of the kernel (line 3), each thread in each unit performs a binary search for
one of the neighbours of the first tile. This is the only binary search that is required, as advancing
to the next tile can be done linearly, lines 4–13. The algorithm advances until it reaches the
beginning of the next part (variable end), which is handled by the next unit. For each tile, in
each (active) thread, function iter is called. The unit (unit) and thread (sub) identifiers are also
passed to the iterator for convenience, as the values of match and ptr are different for each
thread of a unit.

Computation

The data flow in this step is illustrated in Fig. 7.4. This step is implemented by one CUDA
kernel (calc kernel), which requires one iteration through the active tile list, using Algorithm 7.1
(iterator iter is set to function compute). For this kernel, each unit consists of T = 64 threads,
such that in the compute function, all threads of a unit collectively update the 43 data elements
of a tile. Since T > N , only N = 26 threads are active when tracking the pointers of the
neighbouring tiles, in Algorithm 7.1. However, since clearly the most expensive part in this step

114 7.3 Proposed GPU level set method

calc_kernel
Active list

Border flags

Activity flags

compute
New data

Data array

Figure 7.4. Data flow in the computation step. CUDA kernel calc kernel receives as input the
list of active tiles and their attributes, and updates φ according to the level set PDE at each tile
voxel. It also updates the activity flags used in the tile management step for deciding which
tiles are needed during the next iteration.

is the actual computation of φ values, the resulting CUDA kernel is highly efficient. Note that
the parameter γ that defines the narrow band is set to γ = 1.5, as in [144]. Through the compute
function, thread units perform the following:

1. Read an entire tile into shared memory, having each thread of a unit read a floating-point
value. Given that tiles are stored in a consecutive and aligned fashion, this read is coalesced.
Tile data is stored in the center of a 6× 6× 6 cubic array in shared memory.

2. Read the 63 − 43 = 152 border elements. If a neighbour exists in the direction of the border,
read the value from device memory, otherwise substitute −γ or γ depending on the border
flag.

3. Each thread updates φ at its location, by evaluating Eq. (7.1).
4. If the resulting value is outside the range (−γ, γ), it is set to the nearest value within the range.

Otherwise, the activity bit for this thread is set.
5. Write the entire tile back to device memory, having each thread writing a floating-point value.

Similar to the reading step, this write operation is coalesced.
6. Determine the activity flags for this tile by doing a reduction (bitwise-OR the activity flags

of the threads together), and write the result to device memory. This write is not coalesced,
as only the first thread of the unit performs the write operation. However, due to the small
amount of data written this write operation is also efficient.

When reading the border elements, accessing 152 scattered values from multiple tiles has
to be distributed over 64 threads. The access pattern should minimize the number of memory
transactions that the hardware has to perform, given the CUDA constraints. Thus, for each
operation, we store the destination offset, source tile, and source-tile offset encoded into one
word. The operations are sorted so that 34 memory transactions are needed on current hardware,
which is optimal as this number is equal to the number of 128 byte-aligned segments accessed.
To store this pattern a small look-up table in shared memory is used, which is copied from device
memory at the beginning of the kernel.

Since tiles contain 43 voxels, this implies that the larger finite-difference discretization stencil
required by the HJ-WENO scheme (a 3D cross centered in a 53 axis-aligned cube), can also be

Real-Time Sparse Level-Sets on Graphics Hardware 115

implemented using only direct neighbouring tiles.

Tile management

For each currently-active tile, it is first determined which of the neighbouring tiles are needed
in the next time step. If the interface approaches a tile border, the tile at the other side of that
border has to be present in the next time-step to continue the computation. If the activity flag
for a certain border is set, a tile has to be created if it is not yet present in the direction of that
flag. The basic idea then is to iterate over the list of tiles, and for each tile to expand the tile set
by creating tiles in the directions whose activity flags are set. A straightforward implementation
of this idea is to perform a morphological “dilation” of the set of active tiles by a 33 structuring
element [114]. For each element in the dilated version of the set, it should then be determined
whether to create, remove or keep the tile at that position. This assures that new tiles will only
be created at most one time.

During the tile management step, Algorithm 7.2 is used twice to iterate over the dilated ver-
sion of the active list. This is parallelized similarly to the tile iteration step from subsection 7.3.3.

The minimal unit size of T = 32 threads is chosen, which equals the warp size of the under-
lying hardware. Since threads within a warp are automatically synchronized, it is convenient to
use this approach if values need to be combined from the variables of individual threads, such as
in line 6 and 15 of Algorithm 7.2.

In the GPU implementation, tile management cannot be done in just one pass over the active
list as in [144], because it is not known in advance how many tiles will be created, removed or
kept. For this reason, we split the tile-management step in multiple passes, each implemented by
a separate CUDA kernel, see Fig. 7.5:

1. count tiles: In the first pass, Algorithm 7.2 is used to iterate over the data structure. This
CUDA kernel simply counts for each unit how many tiles are created, removed, and kept,
using the activity and border flags. For each unit, it outputs the number of tiles in each of
these categories.

2. prefix sum: The second pass performs a parallel prefix-sum [47] on the previously-computed
counts, to calculate offsets into the old and new active list, for each unit. As the number of
thread blocks and units is limited and fixed, this scan can be done quickly in shared memory
and then the result written back to device memory. This step converts the number of tiles
which are created into an offset into the stack, the number of tiles which are removed into an
offset in a list of tiles added to the stack, and finally, the number of tiles which are either kept
or created into an offset into the new active list. After this pass it is possible to check whether
there is enough space left to accommodate the new tile set, or if new memory needs to be
allocated. To implement this, the total counts are passed back to the CPU.

3. stat cpu: The third pass is a very small, one-thread kernel that computes and outputs a status
record for the CPU, to determine how much memory is used and whether the structure should
be resized. This record contains the following fields: the total number of tiles added, removed
and kept, and the starting offset into the list of free tiles, so that the new tiles are allocated
from the end, thus maintaining the LIFO ordering.

116 7.3 Proposed GPU level set method

4

3

5

1

2

Active list new

stat_cpu

Added offsets new update_tiles

Border flags new

Active list Border flags Activity flags

prefix_sum

count_tiles

#Kept#Added #Removed

Added offsets Kept offsets

get_index

Status record

Removed offsets

Figure 7.5. The overall data flow in the tile management step. Rounded boxes represent data
streams, rectangular boxes denote CUDA kernels and arrows depict directions of data flows;
the order in which the kernels are invoked is shown with numbers inside green circular boxes.

4. get index: In the following step, a full pass over the offsets of newly added tiles is performed,
and a constant value is added so that they can be used as index into the list of free tiles.

5. update tiles: In the final pass, Algorithm 7.2 is reused, however, this time the new active list
is created, new tiles are initialized and the border flags are updated.

When a tile is removed, one of the border bits of each of its neighbours must be updated
to reflect whether the tile was inside or outside the interface. This results in a race condition,
since more tiles could be changing the same neighbour at the same time. To avoid this one could
use atomic bitwise operations, but these are not supported on all hardware. Therefore we use
another, albeit slower, possibility, by storing a “will be deleted” bit during the first pass in the
activity flags for each deleted tile. This is then taken into account in the last pass, when collecting

Real-Time Sparse Level-Sets on Graphics Hardware 117

Algorithm 7.2 Iterating over a dilated version of a lexicographically-ordered list of tile coordi-
nates, maintaining the order. Function iter is called for each tile by each thread. Here N is the
number of neighbours of a tile.
Input: unit {unit number}, sub {thread in unit}, size {active list size}, coord[size] {tile

coords}, neighbourhood[N] {neighbour coords}
1: offset← unit ∗ size/num units {begin of work for this unit}
2: end← (unit+ 1) ∗ size/num units {end of work}
3: ptr← bsearch(size, offset, sub) {locate neighbour, binary search}
4: loop
5: cur← coord[ptr]− neighbourhood[sub]
6: cur← REDUCE32(min, cur) {reduction, minimum value}
7: if cur >= coord[end] then
8: break {end of tile-set reached}
9: end if

10: if coord[ptr] = (cur+ neighbourhood[sub]) then
11: my match← 2sub {if coord matches, this neighbour exists}
12: else
13: my match← 0 {otherwise, it does not exist}
14: end if
15: match← REDUCE32(or, my match) {reduction, bitwise-or}
16: iter (cur, match, ptr, unit, sub) {call the iterator}
17: if my match then
18: ptr← ptr+ 1 {advance structuring element position}
19: end if
20: end loop

the border-flag mutations of all neighbours and integrating them into the new value for itself.

7.3.4 Rendering the interface using CUDA and OpenGL

Traditionally, volume rendering methods [68], implicit surface polygonization [153] and ray-
tracing [54] have been used to render the evolving/resulting interface. Our method uses implicit
surface polygonization, employing marching cubes and runs entirely on the GPU. With modern
programmable GPUs that support geometry shaders, it is possible to generate geometry on the
fly [25]. We use an efficient intermediate-storage structure for the cube attributes, so that the
output of a CUDA or CPU algorithm that computes a sparse volume can be directly visualized,
without the need to access the entire volume in the geometry shader (in the form of a 3D texture,
or otherwise).

Our polygonization algorithm is split into two parts. The first part, based on CUDA, iterates
through the level-set data structure and generates a compact record for each cube (voxel) that is
intersected by the surface. The second part, using a geometry shader, processes these records,
generates triangle positions and normals, and sends these through the rendering pipeline.

118 7.4 Proposed surface reconstruction method

7.4 Proposed surface reconstruction method
The proposed multi-resolution method for surface reconstruction employs convection of the
evolving level-set surface (current approximation to the final reconstructed surface) towards the
input sample points. Since for this application our aim is to achieve very large resolutions, we
had to leverage the computational power of both GPU and CPU. Accordingly, the convection of
the level-set surface runs entirely on the GPU, whereas the computation of the velocity field in
which the surface is convected runs in parallel on the multiple cores of the host CPU. Using ve-
locity fields based on the distance transform as in [161] is not an option, since at very large grid
resolutions, e.g., 20483 voxels, the storage requirements would be more than 30 GB of RAM.
Instead, we use inverse-distance velocity fields similar to [56], which can be evaluated on the fly
on the CPU using memory-efficient octree grids. Although octrees can be very efficiently built
and maintained on the GPU [163], at high grid resolutions their storage requirements on current
GPUs become problematic. Therefore, and since the most expensive part of our surface recon-
struction method is the convection of the level-set surface, we perform convection on the GPU,
and let the octree computations be handled on the CPU side. This approach also shows how
communication between the GPU and the CPU (required also by other level-set applications)
can be effectively accommodated by our level-set method, through the use of a simple caching
scheme minimizing GPU – CPU memory transfers.

For evolving the level-set surface we compute a velocity field based on Shepard interpola-
tion [119] of normalized direction vectors between locations in the narrow band and input point
samples. Formally, let S denote the input set of point samples lying on or near the surface ∂M
of an unknown object M . The problem is to accurately reconstruct the indicator function of M ,
and then to approximate its surface ∂M by a smooth triangulated iso-surface. Given a flexible,
enclosing level-set surface Φ = {x |φ(x, t) = 0}, we formulate the reconstruction problem as
the convection of Φ in the velocity field V due to the input samples xi given by

V(x) =
N∑
i=1

wi(x)f̂i(x), where (7.2)

wi(x) =
di(x)−p∑N
j=1 dj(x)−p

, f̂i(x) =
x− xi
di(x)

, (7.3)

with di(x) =
√
D2
i (x) + ε2, Di(x) = ||x− xi|| is the Euclidean distance between x and xi,

ε > 0 is a small softening constant, N = |S| denotes the number of input samples, and p is a
constant parameter. Thus, V is the minimizer of a functional E(x,V) measuring deviations be-
tween tuples of interpolating points {x,V} and N tuples of interpolated points {xi, f̂i}, defined
as

E(x,V) =
1

2

N∑
i=1

di(x)−p
∣∣∣∣∣∣V − f̂i

∣∣∣∣∣∣2. (7.4)

Passive convection in the velocity field V and flexibility of the level-set surface Φ can be
obtained using Eq. (7.1), and setting F (x) ≡ 0, U(x, t) ≡ V(x) and α > 0. Note that the

Real-Time Sparse Level-Sets on Graphics Hardware 119

Algorithm 7.3 Multi-resolution surface reconstruction.
1: Initialize level-set surface Φ to a box at resolution d
2: Construct octree O with maximum resolution D
3: Compute centroid and number of samples of each node in O
4: Evolve level-set surface at resolution d
5: for r = d+ 1 to D do
6: Upsample level-set surface to resolution r
7: Evolve level-set surface at resolution r
8: end for
9: Output is the final reconstructed surface Φ at resolution D.

velocity field V has to be evaluated at all locations in the narrow band, not only at Φ, such that
extending the velocity to all level sets (within the narrow band) is avoided.

7.4.1 Efficiency and multi-resolution

Letting P (x) =
∑N

i=1 di(x)−p+1 and assuming p > 1, ε > 0, it can be shown by the triangle
inequality that V(x) = c · (−∇P (x)/ ||∇P (x)||), where 0 < c < 1. Thus since −∇P (x) and
V(x) have the same directions and −∇P (x)/ ||∇P (x)|| is a unit vector, convecting the level set
function towards the sample points by taking unit-size steps is optimal. Therefore, evaluating
V for an active tile can be done as follows. First, the potential P is efficiently approximated on
the CPU using the Barnes-Hut algorithm [8] similar to [56]. Then, the computed scalar values
are passed back to the GPU, where the normalized gradient of P is evaluated using central
differences to yield V, during the tile computation step.

The following simple caching scheme on the GPU was devised to improve efficiency and
minimize CPU – GPU memory transfers. An additional array is used on the GPU, indexed by
tile id (see subsection 7.3.3), that stores the P values of the currently active tiles. Whenever
new tiles are created on the GPU during the tile-management step, their corresponding pages
(containing tile coordinates and identifiers) are sent to the CPU, so that the CPU threads can start
immediately evaluating P at the required locations. After the CPU computations terminate, the
P values of the new tiles are transferred to the GPU, so that it can continue with updating the
level-set function. When inactive tiles are removed, their storage is easily reclaimed and reused,
as the array is indexed by tile identifier.

A simple multi-resolution scheme was also deployed, so as to further improve the efficiency
of the method. That is, instead of convecting the level-set surface at the highest resolution, we
successively evolve it at gradually increasing resolutions, see Algorithm 7.3. After initializing
the level-set surface to a box at a small, starting resolution d (line 1), the octreeO required by the
Barnes-Hut algorithm [8] is built (line 2). Given a maximum depth D (corresponding to a grid of
size 23D voxels), the octree O is built top-to-bottom, in an attempt to allocate one sample point
per octree leaf. If upon insertion of a new sample point, a leaf at depth D is reached that already
contains a sample, both samples are discarded and replaced by their centroid. In the process, the
number of samples contained by each leaf is also stored. After the tree is built, the centroid and

120 7.5 Comparison with previous approaches

number of samples is computed for each octree node, by propagating information from leaves
towards the root node (line 3). Next, the level-set surface Φ is convected at the starting resolution
d. Following the Barnes-Hut algorithm, to evaluate P at a location x in the narrow band, octree
nodes are traversed in depth-first order. If x is far from the centroid of a given node n, P is
computed using the total number and centroid of the samples in n. Thus, instead of computing
all contributions of the samples in n, only one contribution due to all samples within the node is
considered. Otherwise, if x is close to centroid of node n, the traversal continues with the child
nodes of n.

Convergence of the level-set surface at any resolution r = d, . . . , D is automatically detected,
as follows. For each active tile, an 8-bit variable is stored, signifying the “age” of the tile. During
the tile-management step, this variable is incremented for each tile that remains active during the
next time step, whereas for newly-added tiles it is set to zero. When the age of all active tiles
is larger than a given value, the level-set surface is assumed to have converged. This criterion is
efficiently implemented in CUDA using a reduction primitive.

Before advancing to the next resolution, the list of active tiles has to be upsampled (line 6).
Upsampling the narrow band is accomplished in two steps:

1. Create a new active list using Algorithm 7.1, by replacing each active tile by 8 new tiles.
The coordinates of the new tiles are set to x′ ≡ 2x + [b0, b1, b2], where b0b1b2 is the binary
representation of c = 0, . . . , 7, the index of the newly-created tile. The tile data of the newly-
created tiles are computed by trilinear interpolation of the initial data.

2. Sort the resulting active list in lexicographic order, using the radix-sort algorithm [113].

The first step is implemented in CUDA in only one compute pass, since each thread working on
one initial tile generates a constant number of tiles in the new active list. Note that, although
the new active list is eight times larger than the initial one, after the first tile-management step,
usually the number of active tiles is halved.

To evolve the level-set surface Φ at resolution r = d, . . . , D, given the octree O built at
resolution D, we proceed as follows. When evaluating P at location x, at resolution r, we in fact
evaluate it at location x′′ ≡ 2D−rx. Moreover, we limit the maximum depth during the octree
traversal to r, i.e., instead of visiting children of nodes at level r, their centroid and number of
samples are used.

At the end of the algorithm, the final reconstructed surface is given by the level-set surface Φ
evolved at resolution D (line 9).

7.5 Comparison with previous approaches
In this section we make a methodological comparison with previous approaches which were
reviewed in Section 7.2.

Our GPU sparse level-set method is similar to that of Lefohn et al. [68], in that it uses small,
fixed-size blocks, i.e., tiles, to represent the narrow band around the interface. However, in
contrast to Lefohn’s method, we do not need to store a map of the complete domain nor have
we to maintain a list of neighbours for each tile. Furthermore, the complex paging mechanism

Real-Time Sparse Level-Sets on Graphics Hardware 121

involved by Lefohn’s method is avoided altogether, and updating the active tiles is a simple
list traversal. Moreover, our method is not bound to a fixed domain. Instead, it allocates and
de-allocates new tiles as the interface propagates to accommodate the deformations. Another
difference is that in our method the GPU handles the tile management step; only a very small
data structure (16 bytes) has to be transferred to the CPU in every iteration so that the CPU can
check whether the tile list is large enough, or has to be resized.

Our approach using fixed-size tiles fits very well the computational model of CUDA. By
contrast, the DT-Grid [89] requires potentially different handling of every voxel, and furthermore
it relies on more complex iterator structures specific for every neighbouring voxel, which would
result in more registers being used in a CUDA implementation. Additionally, to implement in
CUDA the ‘push’ operation used to insert grid points to the DT-Grid data structure, one has to
compare the last inserted coordinate to the current one and execute potentially different code
consisting of write operations in a random-access fashion. This also means that in a parallel
CUDA implementation, the merging step would be more complex. By contrast, in our approach
similar to the STL method, implementing the same operation is trivial, as all one has to do is
simply append the new tile to the active list. The DT-Grid needs more complex steps to maintain
the narrow band, whereas the STL method requires one tile-management step that updates the
active list in linear time [144]. Finally, when rebuilding the tubular grid, the entire current domain
is dilated, while in the STL method only the tiles which are active at the next time step are added
to the active list. Note that since the hierarchical RLE level set method of Huston et al. [54] is
based on the DT-Grid enhanced with RLE compression, the resulting data structure is even more
complex and thus even more difficult to parallelize efficiently. In our tile-based method, access to
neighbouring tiles has a similar pattern (i.e., all GPU threads execute similar operations), which
results in very fast parallel execution. Moreover, tiles can be read or written using coalesced
access operations, which is desirable in CUDA to achieve maximum performance [91]. Thus,
the proposed tile-based data structure further maximizes the potential for parallelism, compared
to other state-of-the-art level set representations.

Although the STL requires about two times as much memory as the DT-Grid, it was shown
that this method is about nine times faster than the latter [144]. The increased memory usage of
the STL method stems from the fact that the narrow band is tile-based, see Fig. 7.1. Note that,
as the DT-Grid was inspired by the compressed-row layout for representing sparse matrices,
the STL and our GPU methods are similar to the compressed-block layout. However, since
values in the narrow band are in a very narrow range, i.e., (−1.5, 1.5) when γ = 1.5, fixed-point
representations on 16-bits can be used to store single-precision φ values, thus improving the
memory usage by almost a factor of two, see subsection 7.6.2.

The proposed multi-resolution method for surface reconstruction is related to [161] in that
we rely on the level set method to represent the approximating surface, which unlike [161] is
convected in an inverse-distance velocity field based on Shepard interpolation [119]. The field is
evaluated on the fly using the “tree algorithm” [8], see Section 7.4 and [56].

Unlike other modeling approaches based on level sets, e.g., [88], our surface-editing method
does not need first to scan-convert the edited models, nor does it require performing volumetric
distance calculations. Therefore, our editing method is not bound to a given grid size, and since it
relies on the proposed sparse, tile-based representation of the narrow band, it is highly efficient,

122 7.6 Results

allowing interactive frame rates on large, volumetric grids.

7.6 Results
In this section we present experimental results obtained by the proposed methods. All experi-
ments were performed on a machine equipped with an Intel Core 2 Quad CPU at 2.4 GHz, 6 GB
RAM and a GeForce GTX 280 GPU (1 GB).

7.6.1 Efficiency: Comparison to other methods
We performed a direct comparison of our GPU level set method with state-of-the-art, sparse
counterparts running on the CPU. The parameters of all level set methods were set to F (x) = 0.1,
α = 1, U(x, t) = 0, such that the interface collapses to a point, mostly due to motion with speed
proportional to its curvature, see Eq. 7.1. In all cases, the initialization was the surface of the
Lucy model (see subsection 7.6.2) reconstructed by our method (Section 7.4) on a 10243 grid; the
initial number of active tiles was 127, 535. The average timings per iteration in five runs, of the
STL method (SSE-optimized and plain), DT-Grid and our GPU method are shown in Fig. 7.6. As
can be seen, all methods show similar performance patterns, implying that our GPU method is
(in practice) work efficient. Only after 4, 000 iterations, when the number of active tiles becomes
smaller than 10, 000, our GPU method becomes slightly less efficient, which is to be expected
as the GPU compute resources are not fully used. Note that all methods converge in the same
number of iterations (5830), indicating that the evolutions of the surfaces were the same.

Table 7.1. Final timings and overall performance for both STL methods (SSE and plain), DT-
Grid and our method.

Method Timing (s) Speedup
DT-Grid 7, 051 1.0
STL (plain) 1, 506 4.7
STL (SSE) 616.0 11.4
Our method 29.5 239.0

Final timings of the simulation and speedups with respect to the slowest method (DT-Grid)
are given in Table 7.1. Accordingly, our GPU method is about 20 times faster than the SSE-
optimized STL method and two orders of magnitude faster than the DT-Grid method. The mem-
ory requirements of our GPU method are similar to those of the STL method, which in turn are
about 2.5 times larger than those of the storage-optimal DT-Grid. However, in section 7.6.2 we
show that the memory footprint of our method can almost be halved.

Since a direct comparison between GPU particle (marker) level sets [27, 83] and a pure level
set method cannot be done, due to the additional computations involved by the first methods,
we just indicate that their computational complexities scale with the size of the grid, while ours

Real-Time Sparse Level-Sets on Graphics Hardware 123

0 1000 2000 3000 4000 5000 6000
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

Iteration

T
im

e(
m

s)

DT−Grid
STL (plain)
STL (SSE)
Our method

Figure 7.6. Efficiency. Logarithmic plot: time (ms) per iteration for the STL method (SSE-
hand optimized and plain), DT-Grid and our GPU method. Initial surface was the Lucy model
reconstructed by our method on a 10243 grid.

scales with the size of the level-set surface. Moreover, particle (marker) level-set methods per-
form at about 20 fps on small, 1283 grids, whereas our method runs at interactive rates on sub-
stantially larger (10243) grids, see subsection 7.6.3.

7.6.2 Surface reconstruction
Throughout all our surface reconstruction experiments, we set p = 3 in Eq. (7.2), and use flat
shading when rendering the reconstructed models, so as to emphasize the smoothness of the
surfaces delivered by our method.

According to our discussion from Section 7.4, the proposed method for surface reconstruction
delivers multi-resolution representations at increasing grid resolutions. In the first experiment,
the octree depth was set to D = 10, and we start the reconstruction process at level d = 7 from
a cube surrounding the Armadillo model, see Fig. 7.7. The evolution of the level-set surface
Eq. (7.1), is steered using F (x) = 0 and α = 0.1, where U is evaluated on the GPU from
inverse-distance potentials, see subsection 7.4.1. It took 700 iterations for the level-set surface

124 7.6 Results

Figure 7.7. Multi-resolution surface reconstruction. Left-to-right, top-to-bottom: octree depths
d = 7, 8, 9, 10.

to converge and reconstruct the Armadillo model at level d = 7. Before advancing to the next
resolutions, 10 curvature flow iterations were used to produce the models in Fig. 7.7. Further,
at each resolution r = 8, 9, 10, less than 100 full iterations were necessary for the level-set
surface to converge. Since directly evolving the level-set surface at the maximum resolution
D = 10 would require well in excess of 1, 000 (700 + 3 × 100) iterations, which are also more
computationally expensive, our choice of using a multi-resolution scheme is, in our opinion,

Real-Time Sparse Level-Sets on Graphics Hardware 125

Figure 7.8. Noise behaviour. Left: noisy range data with 2 · 106 samples and 4, 000 outliers.
Right: reconstructed surface, D = 10.

Table 7.2. Reconstruction statistics for the Thai-statue model (5 million samples). Octree
construction time (at level 12) was 13 seconds (s), the peak memory usage was 860 MB on the
GPU and 2.5 GB on the CPU.

Octree Number of Number GPU CPU Total
depth d iterations of tiles time(s) time(s) time(s)

7 704 1, 724 1.3 0.9 2.2
8 297 7, 127 0.4 1.8 4.4
9 128 38, 425 1.3 4.4 10.1
10 107 138, 812 2.2 18.2 30.5
11 101 557, 030 11.6 80.8 122.9
12 100 2, 246, 782 60.2 323.2 506.3

justified.
The proposed method for surface reconstruction withstands large numbers of outliers, due to

its reliance on inverse-distance potentials [56]. Moreover, increasing the stiffness of the inter-
face, by adjusting the curvature term in Eq. (7.1), allows it to bypass outlier locations during its
evolution, see Fig. 7.8.

Our method allows reconstruction of large models on octree grids of up to 211×3 voxels,

126 7.6 Results

Figure 7.9. Reconstruction of two models (Thai statue and Lucy) at very large resolutions
(octree level D = 12).

i.e., the maximum octree depth is set to D = 11. At larger grid resolutions, the storage re-
quirements of the narrow-band on the GPU become larger than the GPU memory. However,
by trading accuracy for storage space we can push the maximum resolution to one octree-level
higher, without introducing any visible artifacts. Since within the narrow band the level-set func-
tion satisfies |φ| < 1.5 (assuming γ = 1.5), a fixed-point representation on 16-bits is used to

Real-Time Sparse Level-Sets on Graphics Hardware 127

Table 7.3. Reconstruction statistics for the Lucy model (14 million samples). Octree construc-
tion time was 17 seconds (s), the peak memory usage was 800 MB on the GPU and 1.8 GB on
the CPU.

Octree Number of Number GPU CPU Total
depth d iterations of tiles time(s) time(s) time(s)

7 602 1, 320 1.1 0.8 1.9
8 210 6, 691 0.2 0.4 2.5
9 180 35, 956 1.1 2.8 6.4
10 120 127, 537 2.7 13.7 22.8
11 112 408, 362 10.1 62.1 95.0
12 114 2, 047, 288 58.2 279.2 432.4

store its 32-bit, single precision values. Similarly, after clamping P values (see Section 7.3.1) in
the range (0, 103) and adaptively-compressing them using a logarithmic function, such that more
precision is used towards the maximum end of the range, the resulting values are stored again
using a fixed-point representation. This simple storage scheme reduces the overall GPU memory
footprint by almost a factor of two, thus allowing us to reconstruct large models at even higher
resolution grids. The results of two such experiments are shown in Fig. 7.9, and some statistics
about the overall reconstruction process is given in Tables 7.2 and 7.3. As can be seen, with
increasing resolution the size of the narrow band becomes about four times larger than that at the
previous resolution, resulting in about the same penalty factor at which the speed of both CPU
and GPU computations decreases. Thus, at any resolution, both CPU and GPU computational
requirements scale with the size of the interface, which makes our reconstruction method highly
efficient. For comparison, the recent method in [56], which was considerably faster than other
recent approaches, reconstructs both the Thai-statue and Lucy models at octree depth D = 11 in
28 and 21 minutes, respectively. Our method needs only 9 and 8 minutes, respectively, to recon-
struct both models at depth D = 12, which makes our method at least one order of magnitude
faster. To mention another comparison, the parallel Poisson method for surface reconstruction
yields the Lucy model at depth D = 12 on a distributed-memory cluster with 12 processors in 17
minutes [10], at the expense of large data replication across the three workstations constituting
the cluster.

7.6.3 Interactive level-set surface editing

Finally, we extended our GPU level-set framework to accommodate free-form level-set surface
editing operators [88]. The following operators are currently available:

• Global morphological operators (erosion, dilation, opening and closing) [114]. For example,
the erosion operator is easily obtained by setting F (x) = 1 in Eq. (7.1).
• Local, weighted, morphological operators. For example, a Gaussian-weighted, local dilation

128 7.6 Results

operator is performed by setting

F (x) =

{
f0Gσ(d(x)), d(x) ≤ 3σ
0, d(x) > 3σ,

(7.5)

with Gσ a Gaussian kernel of width σ, f0 a positive constant, and d(x) the Euclidean distance
between location x of the narrow band and xm, the center of the local manipulator widget.
• Selection is performed in three steps. First, the tiles intersecting the selection box are found

using binary search within the list of active tiles. Second, at their locations, the object is
disconnected using local erosion operators. Finally, tiles within the selection box (forming
one or more disconnected objects) are selected.
• Pasting consists in simply adding tiles representing selected objects to the active list. Here we

make the assumption that the tile sets of the pasted objects are disjoint.
• Deletion removes selected tiles from the active list.
• Rotation around an arbitrary point is obtained by convecting the level-set surface representing

the selected object in a rotational velocity field implementing the desired rotation. The fifth-
order accurate HJ-WENO scheme is used, see subsection 7.3.1.
• Translation is performed by manipulating tile coordinates.
• Point set attraction and repulsion. Given a point set, a velocity field is constructed, which

either attracts or repels the level-set surface.
• Local and global smoothing operators. Global curvature smoothing is obtained by using

only the curvature term in Eq. (7.1). Local smoothing is implemented by constraining global
smoothing to a Gaussian neighbourhood.

Figure 7.10 shows a subset of our surface-editing operators, while constructing a double-
headed dragon model. First, the head of the dragon is selected, saved on disk, and then deleted.
In a new modeling session, the head of the dragon is selected and duplicated by pasting. Then,
both heads are rotated and pasted to the previously-saved dragon body. After the two heads
are glued using local morphological operators and attractors, the resulting model is smoothed.
The initial dragon model was obtained by surface reconstruction (Section 7.4), on an equivalent
10243 voxel grid. The minimum frame rate we observed during the manipulation of the level-set
surface was about 20 fps.

7.6.4 Limitations
Our current method has a number of limitations which we want to address in future work.

• Currently, the entire dataset has to be kept in GPU memory, i.e., there is no out-of-core
support. We could however, use our convergence criterion to remove from GPU memory
those tiles in which the level-set method already converged, to make space for new tiles.

• Merging two (unsorted) tile lists requires a re-sorting of the resulting list. On the other
hand, if the two lists are already sorted, this can be done in a less expensive merge pass.

• Tile deletion requires a pass over the entire active list. For this purpose, using a hierarchical
structure or a hash table would be more efficient.

Real-Time Sparse Level-Sets on Graphics Hardware 129

Figure 7.10. Editing the Dragon model. First, the head of the dragon is cut off, pasted, rotated
and glued back onto the body. Local and global smoothing operations are then applied to
produce the final double-headed dragon.

7.7 Conclusions and future work
We have presented a highly-efficient, sparse, tile-based level set method, which runs entirely
on commodity graphics hardware. We compared our method to other state-of-the-art, sparse
approaches, and have shown that ours is about 20 times faster than the optimized CPU version
of the Sorted Tile List method, and two orders of magnitude faster than the DT-Grid method.

Many level-set applications can benefit from our level-set GPU infrastructure. To demon-
strate its efficiency, we discussed two graphics applications: surface reconstruction from point
clouds and level-set surface editing. Our novel multi-resolution method for surface reconstruc-
tion compares favorably with recent, existing techniques and parallel implementations. Finally,
our free-form surface editing tool runs at interactive frame rates on large volumetric grids of
10243 voxels.

In future work, we shall investigate the possibility of extending our GPU level-set framework
to accommodate the particles of the Particle/Marker level-set method. Moreover, work is in
progress to adapt our data structure to implement simulations based on the Smoothed Particle
Hydrodynamics (SPH) method. Finally, we plan to combine the GPU octree implementation
of [163] with our GPU level sets, across a number of GPUs, to achieve very efficient, scalable
parallel surface reconstruction.

130 7.7 Conclusions and future work

Chapter 8

Concluding remarks

8.1 Summary and Conclusions
In this thesis we investigated several advanced techniques in visualization of large data sets,
multidimensional signal processing, deformable models, and data reduction. As we aimed to
develop fast algorithms, all of these can be used in an interactive pipeline.

In chapter 2 we have investigated a number of algorithms based on morphological pyramids
for multiresolution MIP volume rendering on graphics hardware. We found that our highly-
optimized streaming MIP GPU-method outperforms both its software implementation as well as
existing ray-casting and 3-D texture-based methods.

In chapter 3 we presented a novel, fast wavelet lifting implementation on graphics hardware
using CUDA, which extends to any number of dimensions. We compared our method to an op-
timized CPU implementation of the lifting scheme, to another (non-CUDA based) GPU wavelet
lifting method, and also to an implementation of the wavelet transform in CUDA via convolu-
tion. We implemented our method both for 2D and 3D data. The method is scalable and was
shown to be the fastest GPU implementation among the methods considered. Our theoretical
performance estimates turned out to be in fairly close agreement with the experimental observa-
tions. The complexity analysis revealed that our CUDA kernels are cost- and work-efficient. Our
proposed GPU algorithm can be applied in all cases were the Discrete Wavelet Transform is part
of a pipeline for processing large amounts of data. Examples are the encoding of static images,
such as the wavelet-based successor to JPEG, JPEG2000 [123], or video coding schemes [9].

In chapter 4, we showed how to accelerate the Dirac Video Codec by our fast wavelet lift-
ing implementation on graphics hardware using CUDA. We also accelerated the motion com-
pensation and frame arithmetic stages of this codec. The experiments on high definition video
sequences have demonstrated that one can achieve a speedup factor of more than 7 for the en-
tire decoding process including the CPU steps, and a factor of 15 for just the GPU part. In our
benchmark we could play back a 1080p resolution Dirac video sequence at roughly 50 frames
per second on basic consumer hardware.

In chapter 5 we presented a new method for rendering fluids in real-time directly from particle
based representations without the need for intermediate triangulation, but which still produces
a high-quality fluid surface. We also introduced new ideas to add thickness-based shading and
small-scale surface detail to fluids.

132 8.2 Future outlook

In chapter 6 we proposed an efficient data structure, the Sorted Tile List, with associated
operations for the level set representation, and compared the resulting method with the current
method of choice, the DT-Grid method. With regard to performance, given the same numerical
simulation code, our method turned out to be faster by a significant factor. After fine-grain
parallelization using SIMD instructions our method was shown to be roughly 8 times faster.

In chapter 7 we adapted our highly-efficient, sparse, tile-based level set method to leverage
highly parallel architectures such as GPUs We compared our method to other state-of-the-art,
sparse approaches, and showed that our method is about 20 times faster than the optimized
CPU version of the Sorted Tile List method, and two orders of magnitude faster than the DT-
Grid method. Many level-set applications can benefit from our level-set GPU infrastructure. To
demonstrate its efficiency, we discussed two graphics applications: surface reconstruction from
point clouds and level-set surface editing. Our novel multi-resolution method for surface re-
construction compares favorably with recent, existing techniques and parallel implementations.
Finally, our free-form surface editing tool runs at interactive frame rates on large volumetric grids
of 10243 voxels.

8.2 Future outlook

8.2.1 GPUs

In the land of GPUs, things change fast, very fast. This makes it very difficult to say something
about the future which is not outdated already. Certain is that slowly but steadily the typical
GPU restrictions are being removed. Several limitations existed when this thesis project was
started: 3D floating-point textures were not available, rendering directly into a texture was not
fully implemented, writing to multiple (output) buffers was not yet allowed, and instruction sets
were limited. These obstacles were removed in the course of perhaps not more than a year.
With the advent of CUDA, which was introduced after the work on MIP rendering with mor-
phological pyramids was completed, even more limitations of traditional GPGPU programming
disappeared.

Other limitations have been alleviated but remain a limiting factor in performance. For exam-
ple, the NVidia Tesla (G80) architecture did not support any sort of caching for global memory, so
the programmer had to rely on optimized memory access patterns to reach a significant through-
put. The Fermi (GF100) [93] generation added a cache hierarchy, and relaxed the constraints on
memory access patterns. The cache comes at a price, as part of shared memory is traded for it.
Even with caching, the maximum throughput is achieved by using an optimized access pattern,
so the results described in this thesis remain important.

Lifting such architectural restrictions makes the GPU stream processors become more com-
plex and more like CPU cores. On the other hand, CPUs increasingly include more GPU-like
features (e.g., instruction sets for exploiting inherent parallelism, or an increasing number of
cores). It is probable that convergence will occur, although it is not yet clear what the end result
should be. GPU vendors should be careful not to generalize too much, as the strength of GPGPU
computing lies in massive parallelism with simple execution units.

Concluding remarks 133

8.2.2 Computer Graphics APIs
As graphics cards grow toward full programmability and generality, APIs such as OpenGL/DirectX
will, for graphics programming, probably be overtaken by more convenient higher level graphics
APIs (such as OGRE [?]), which allow full programmability and extensibility under the hood, by
making use of GPGPU APIs such as OpenCL [137]. As these libraries are designed with the user
in mind, they might rely on abstractions such as Renderman [5] that are used in 3D rendering for
motion pictures.

If programmable GPUs mature like CPUs, which they will probably do, there will be multiple
programming languages to choose from, but the interface to the hardware will be standardized
by the operating system. As this will provide the low level interface, the graphics APIs lose their
status as low level interface to the hardware and become intermediate level interfaces. Will there
still be a place for them?

OpenGL started out as a complete set of rendering commands for the professional graphics
hardware. DirectX started as a light programming interface for customer graphics hardware.
Both have evolved enormously since, and have long ago converged with respect to capabilities.
At their heart, they both have the triangle rasterization-oriented graphics pipeline. With pro-
grammable hardware, the full graphics pipeline has been implemented in software [72] which is
much more flexible. In many cases, the focus on a rigid rendering pipeline only gets in the way.
For example when implementing advanced rendering techniques (such as ray-tracing [120], vox-
els [26], or irregular volume rendering [162]) using complex data structures, one does not want
to worry about the triangle rasterization state.

Also, the graphics APIs have their own specific problems, that might make them fade out
of scope eventually. OpenGL suffers from a very slow political decision process, which results
in vendors bolting on their own hardware specific extensions. This makes it very complex for
users, which have to cope with all the combinations of extensions and hardware details. DirectX
has the opposite problem, its decision process is fast and pragmatic, and thus its programming
interface is changed wildly in every major release. However, it is inefficient for programmers to
have to learn a new API every two years, and an application needs to be able to make use of two
or three versions to be able to support older hardware. Also, it is restricted to the MS Windows
operating system, which has a large installed base, but is not quite the whole story nowadays,
especially in the growing mobile realm.

8.2.3 CUDA
CUDA still has a few user (developer) friendliness issues that hamper its adoption. Although
currently used by companies in oil and gas and finance, and at many universities, far outside the
scope of computer graphics and games where it began, adoption of CUDA would be helped by
finding ways to integrate GPGPU into day to day experimentation. Some of these issues are the
following.

Ease of programming Even though GPUs can be programmed in C nowadays, a lot of hard-
ware pitfalls exist which make that code which is not specifically optimized runs slower than the

134 8.2 Future outlook

CPU implementation. Specific techniques that take knowledge of the hardware into account are
needed, especially since the hardware continuously changes. The NVidia Fermi [93] architec-
ture takes a step in the right direction by adding cache and relaxing the constraints on memory
access patterns. This makes it easier for a programmer to write moderately efficient code. The
authors of CUDA-lite [141] have developed a tool to simplify CUDA programming by help-
ing the programmer to deal with the complex memory hierarchy. Another programming issue
is the difficulty of writing shared memory parallel code. Programmers tend to think in blocks
and objects communicating with each other, for example using MPI [125]. The GRAMPS [129]
programming model is an interesting development in this direction, as it considers the GPU as a
general set of stages connected by queues.

Debugging It has always been very difficult to debug GPU code. There used to be no sup-
port for single-stepping through code or using breakpoints, and also no way to log simple tracing
messages. The only possibility of debugging was to write to some memory area or texture, and in-
spect this result from the CPU. This has been addressed with the introduction of the CUDA GPU
debugger in CUDA 3.0, which does offer those features. Also, there has been research to make
debugging GPU code more convenient, see Hou et al. [53]. However there is a general problem
in debugging multi-threaded code: conventional debugger paradigms were invented with single-
threaded usage in mind, and hardly consider thread communication and synchronization, which
are exactly the areas that tend to introduce most bugs.

Scalability With so-called cloud computing (general-purpose utility computing clusters) on the
rise, scalabilty is more important than ever. Recently, Amazon EC2, a popular cloud-computing
platform, introduced a new node type with two GPUs. Everyone can now hire a full-blown GPU
cluster for a few hours for a relatively low cost.

Utilizing this cluster is another story, though. Many of the challenges in GPU cluster building,
management and programming are addressed in [64]. However, one issue remains: the use of
clusters adds yet another level to the already complex GPU execution and memory hierarchy.
It would be most efficient if the programmer could write code that runs on clusters as well as
single and multiple GPUs of various sizes, without having to worry about the different levels of
parallelism and data distribution between nodes, except when fine-tuning.

Library support There is always a demand for more readily usable general purpose and
application-specific software libraries. Libraries currently provided by NVidia are “cublas” for
linear algebra, “cufft” for FFT transforms, and “cudpp” for generic parallel primitives. Third-
party libraries have also been developed, such as OpenVIDIA [37] for computer vision.

8.2.4 GPGPU for embedded systems
In my opinion a great, mostly open opportunity is the use of GPGPUs in embedded systems,
such as intelligent vehicles that process large amounts of incoming sensor data, cameras that
recognize faces, and other upcoming “smart devices”. GPUs excel at fast signal processing, for

Concluding remarks 135

adaptive controller systems, artificial intelligence, pattern matching, and so on. However, there
are still a few issues with this.

Noise and heat GPU boards have the reputation of producing much heat which has to be
cooled with fans which produce a large amount of noise. Also, even though the performance-
to-watt ratio of GPUs compares very favorably to CPUs, they use a lot of power, also when
(partially) inactive. The latter is being addressed with on-chip power saving techniques.

Platform openness GPUs are hard to embed due to closed platforms and drivers; there are no
drivers for platforms generally used in embedded systems such as MIPS or ARM. Also, only a
few operating systems are supported.

I/O capability There is currently no direct I/O possibility except to and from the host system
(and the graphics output). Direct input from sensors and output to peripherals would be useful.
It is an interesting open question how to best integrate the mostly serial nature of external I/O
with the parallel nature of GPU programming.

136 8.2 Future outlook

Bibliography

[1] T. Acharya and C. Chakrabarti. A survey on lifting-based discrete wavelet transform
architectures. J. VLSI Signal Process. Syst., 42(3):321–339, 2006.

[2] D. Adalsteinsson and J. A. Sethian. A fast level set method for propagating interfaces. J.
Comput. Phys., 118(2):269–277, 1995.

[3] B. Adams, T. Lenaerts, and P. Dutre. Particle splatting: Interactive rendering of particle-
based simulation data. Technical Report CW 453, Department of Computer Science, K.U.
Leuven, July 2006.

[4] M. Angelopoulou, K. Masselos, P. Cheung, and Y. Andreopoulos. Implementation and
comparison of the 5/3 lifting 2d discrete wavelet transform computation schedules on
FPGAs. J. Signal Process. Syst., 51(1):3–21, 2008.

[5] A. A. Apodaca and L. Gritz. Advanced RenderMan: Creating CGI for Motion Picture.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1999.

[6] V. Aurich and J. Weule. Non-linear gaussian filters performing edge preserving diffusion.
In DAGM-Symposium, pages 538–545, 1995.

[7] C. Auyeung, J. J. Kosmach, M. T. Orchard, and T. Kalafatis. Overlapped block motion
compensation. In P. Maragos, editor, Proc. SPIE Visual Communications and Image Pro-
cessing ’92, pages 561–572, Nov. 1992.

[8] J. E. Barnes and P. Hut. A hierarchical O(N Log N) force calculation algorithm. Nature,
324(4):446–449, 1986.

[9] BBC Research. Dirac Specification 1.0.0pre7. Available at http://dirac.sourceforge.net/
specification.html.

[10] M. Bolitho, M. Kazhdan, R. Burns, and H. Hoppe. Parallel poisson surface reconstruction.
In International Symposium on Visual Computing 2009, 2009.

[11] M. Botsch, A. Hornung, M. Zwicker, and L. Kobbelt. High-quality surface splatting
on today’s GPUs. In Proceedings Eurographics/IEEE VGTC Symposium Point-Based
Graphics, pages 17–141, Los Alamitos, CA, USA, 2005. IEEE Computer Society.

http://dirac.sourceforge.net/specification.html
http://dirac.sourceforge.net/specification.html

138 BIBLIOGRAPHY

[12] R. Bridson. Fluid Simulation for Computer Graphics. A K Peters, 2008.

[13] R. E. Bridson. Computational aspects of dynamic surfaces. PhD thesis, Stanford Univer-
sity, Stanford, CA, USA, 2003. Adviser-Ronald Fedkiw.

[14] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanra-
han. Brook for GPUs: stream computing on graphics hardware. ACM Trans. Graph.,
23(3):777–786, 2004.

[15] P. J. Burt and E. H. Adelson. The Laplacian pyramid as a compact image code. IEEE
Trans. Communications, 31:532–540, 1983.

[16] A. R. Calderbank, I. Daubechies, W. Sweldens, and B.-L. Yeo. Wavelet transforms that
map integers to integers. Applied and Computational Harmonic Analysis, 5(3):332–369,
1998.

[17] I. Cantlay. High Speed, Off-Screen Particles. In H. Nguyen, editor, GPU Gems 3.
NVIDIA, 2007.

[18] S. Chatterjee and C. D. Brooks. Cache-efficient wavelet lifting in JPEG 2000. In Proc. of
the IEEE International Conference on Multimedia and Expo, pages 797–800, 2002.

[19] J. Chen, S. Paris, and F. Durand. Real-time edge-aware image processing with the bilateral
grid. In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers, page 103, New York, NY, USA,
2007. ACM.

[20] M. Y. Chiu, K.-B. Lee, and C.-W. Jen. Optimal data transfer and buffering schemes for
JPEG 20000 encoder. In Proc. IEEE Workshop on Design and Implementation of Signal
Processing Systems, pages 177–182, 2003.

[21] D. L. Chopp. Computing minimal surfaces via level set curvature flow. J. Comput. Phys.,
106(1):77–91, 1993.

[22] S. Clavet, P. Beaudoin, and P. Poulin. Particle-based viscoelastic fluid simulation. In
Symposium on Computer Animation 2005, pages 219–228, July 2005.

[23] H. Cords and O. Staadt. Instant liquids. In Poster Proceedings of ACM Sig-
graph/Eurographics Symposium on Computer Animation, Dublin, Ireland, July 2008.

[24] K. Crane, I. Llamas, and S. Tariq. Real-time simulation and rendering of 3D fluid. In
H. Nguyen, editor, GPU Gems 3, chapter 30, pages 633–675. Addison Wesley, August
2007.

[25] C. Crassin. OpenGL Geometry Shader Marching Cubes, 2007. http://www.icare3d.org/
blog techno/gpu/opengl geometry shader marching cubes.html.

http://www.icare3d.org/blog_techno/gpu/opengl_geometry_shader_marching_cubes.html
http://www.icare3d.org/blog_techno/gpu/opengl_geometry_shader_marching_cubes.html

BIBLIOGRAPHY 139

[26] C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann. Gigavoxels: Ray-guided streaming
for efficient and detailed voxel rendering. In ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, I3D 2009, February, 2009, pages 15–22, Boston, MA, Etats-
Unis, 2009. ACM.

[27] N. Cuntz, A. Kolb, R. Strzodka, and D. Weiskopf. Particle level set advection for the
interactive visualization of unsteady 3D flow. Computer Graphics Forum, 27(3):719–726,
May 2008.

[28] I. Daubechies. Ten Lectures on Wavelets, volume 61 of CBMS-NSF Regional Conference
Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, 1992.

[29] I. Daubechies and W. Sweldens. Factoring wavelet transforms into lifting steps. J. Fourier
Anal. Appl., 4(3):247–269, 1998.

[30] M. Desbrun and M.-P. Gascuel. Smoothed particles : A new paradigm for animating
highly deformable bodies. In Computer Animation and Simulation ’96, pages 61–76,
1996.

[31] G. Deslauriers and S. Dubuc. Symmetric iterative interpolation processes. Constructive
Approximation, 5(1):49–68, dec 1989.

[32] R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering. Computer Graphics
(SIGGRAPH ’88 proceedings), 22(4):65–74, 1988.

[33] M. Droske, B. Meyer, M. Rumpf, and C. Schaller. An adaptive level set method for
medical image segmentation. In IPMI ’01: Proceedings of the 17th International Confer-
ence on Information Processing in Medical Imaging, pages 416–422, London, UK, 2001.
Springer-Verlag.

[34] D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell. A hybrid particle level set method for
improved interface capturing. J. Comput. Phys, 183:83–116, 2002.

[35] R. Fedkiw. Simulating natural phenomena for computer graphics. In Geometric Level Sets
in Imaging, Vision and Graphics, pages 461–479, 2002.

[36] M. Fournier, J.-M. Dischler, and D. Bechmann. 3D distance transform adaptive filtering
for smoothing and denoising triangle meshes. In GRAPHITE ’06: Proceedings of the 4th
international conference on Computer graphics and interactive techniques in Australasia
and Southeast Asia, pages 407–416, New York, NY, USA, 2006. ACM.

[37] J. Fung and S. Mann. Openvidia: parallel gpu computer vision. In MULTIMEDIA ’05:
Proceedings of the 13th annual ACM international conference on Multimedia, pages 849–
852, New York, NY, USA, 2005. ACM.

140 BIBLIOGRAPHY

[38] A. Garcia and H. W. Shen. GPU-based 3D wavelet reconstruction with tileboarding. The
Visual Computer, 21:755–763, 2005.

[39] J. Goutsias and H. J. A. M. Heijmans. Multiresolution signal decomposition schemes. Part
1: Linear and morphological pyramids. IEEE Trans. Image Processing, 9(11):1862–1876,
2000.

[40] A. Greß and G. Zachmann. GPU-ABiSort: Optimal parallel sorting on stream archi-
tectures. In Proc. 20th IEEE Intern. Parallel and Distributed Processing Symposium
(IPDPS), pages 25–29, Rhodes Island, Greece, apr 2006.

[41] M. H. Gross, L. Lippert, R. Dittrich, and S. Häring. Two methods for wavelet-based
volume rendering. Computer & Graphics, 21(2):237–252, 1997.

[42] M. H. Gross, L. Lippert, A. Dreger, and R. Koch. A new method to approximate the
volume rendering equation using wavelet bases and piecewise polynomials. Computers &
Graphics, 19(1):47–62, 1995.

[43] R. Grosso and T. Ertl. Biorthogonal wavelet filters for frequency domain volume render-
ing. In Visualization in Scientific Computing ’95, pages 81–95. Springer Verlag, 1995.

[44] R. Grosso and T. Ertl. Biorthogonal wavelet filters for frequency domain volume render-
ing. In R. Scateni, J. van Wijk, and P. Zanarini, editors, Proceedings of Visualization in
Scientific Computing ’95, pages 81–95. Springer, Wien, New York, 1995.

[45] R. Grosso, T. Ertl, and J. Aschoff. Efficient data structures for volume rendering of
wavelet-compressed data. In Fourth Int. Conference in Central Europe on Computer
Graphics and Visualization ’96, volume I, pages 103–112. WSCG’96, 1996.

[46] S. Guthe, M. Wand, J. Gonser, and W. Straßer. Interactive rendering of large volume data
sets. In Proc. IEEE Visualization 2002, pages 53–60, Boston, Massachusetts, USA, 2002.
IEEE Computer Society.

[47] M. Harris, S. Sengupta, and J. D. Owens. Parallel prefix sum (scan) with CUDA. In
H. Nguyen, editor, GPU Gems 3. Addison Wesley, Aug. 2007.

[48] H. J. A. M. Heijmans. Morphological Image Operators, volume 25 of Advances in Elec-
tronics and Electron Physics, Supplement. Academic Press, New York, 1994.

[49] H. J. A. M. Heijmans and J. Goutsias. Multiresolution signal decomposition schemes. Part
2: morphological wavelets. IEEE Trans. Image Processing, 9(11):1897–1913, 2000.

[50] H. J. A. M. Heijmans and J. B. T. M. Roerdink, editors. Mathematical Morphology and
its Applications to Image and Signal Processing, volume 12 of Computational imaging
and vision, chapter Chapter 3: Shape Analysis and Partial Differential Equations. Kluwer
Academic Publishers, 1998.

BIBLIOGRAPHY 141

[51] M. Hopf and T. Ertl. Accelerating Morphological Analysis with Graphics Hardware. In
Workshop on Vision, Modelling, and Visualization VMV ’00, pages 337–345. infix, 2000.

[52] M. Hopf and T. Ertl. Hardware Accelerated Wavelet Transformations. In Proc. of
EG/IEEE TCVG Symposium on Visualization VisSym ’00, pages 93–103, May 2000.

[53] Q. Hou, K. Zhou, and B. Guo. Debugging gpu stream programs through automatic
dataflow recording and visualization. ACM Trans. Graph., 28(5), 2009.

[54] B. Houston, M. B. Nielsen, C. Batty, O. Nilsson, and K. Museth. Hierarchical RLE level
set: A compact and versatile deformable surface representation. ACM Trans. Graph.,
25(1):151–175, 2006.

[55] I. Ihm and S. Park. Wavelet-based 3d compression scheme for interactive visualization of
very large volume data. Computer Graphics Forum, 18(1):3–15, March 1999.

[56] A. C. Jalba and J. B. T. M. Roerdink. Efficient surface reconstruction using generalized
Coulomb potentials. IEEE Trans. Visualization and Computer Graphics, 13(6):1512–
1519, 2007.

[57] A. C. Jalba, M. H. Wilkinson, and J. B. T. M. Roerdink. Automatic segmentation of
diatom images for classification. Microscopy Research and Technique, 65(1-2):72–85,
Sept. 2004.

[58] A. C. Jalba, M. H. Wilkinson, and J. B. T. M. Roerdink. Morphological hat-transform
scale spaces and their use in pattern classification. Pattern Recognition, 37(5):901–915,
2004.

[59] A. C. Jalba, M. H. Wilkinson, and J. B. T. M. Roerdink. Shape representation and recog-
nition through morphological curvature scale spaces. IEEE Trans. Image Processing,
15(2):331–341, Feb. 2006.

[60] W. Jiang and A. Ortega. Parallel Architecture for the Discrete Wavelet Transform based on
the Lifting Factorization. Journal of Parallel and Distributed Computing, 57(2):257–269,
1999.

[61] C. Johanson. Real-time water rendering - introducing the projected grid concept. Master’s
thesis, Department of Computer Science, Lund University, March 2004.

[62] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruction. In Eurographics
Symposium on Geometry Processing, pages 61–70, 2006.

[63] Khronos OpenCL Working Group. The OpenCL Specification, version 1.0.29, 8 December
2008.

[64] V. V. Kindratenko, J. Enos, G. Shi, M. T. Showerman, G. W. Arnold, J. E. Stone, J. C.
Phillips, and W. mei W. Hwu. GPU clusters for high-performance computing. In CLUS-
TER, pages 1–8. IEEE, 2009.

142 BIBLIOGRAPHY

[65] J. Kniss, G. Kindlmann, and C. Hansen. Multidimensional transfer functions for interac-
tive volume rendering. IEEE Trans. Visualization and Computer Graphics, 8(3):270–285,
2002.

[66] J. Kruger and R. Westermann. Acceleration techniques for GPU-based volume render-
ing. In VIS ’03: Proceedings of the 14th IEEE Visualization 2003 (VIS’03), page 38,
Washington, DC, USA, 2003. IEEE Computer Society.

[67] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha. Fast BVH con-
struction on GPUs. Computer Graphics Forum, 28(2):375–384, 2009.

[68] A. E. Lefohn, J. M. Kniss, C. D. Hansen, and R. T. Whitaker. A streaming narrow-
band algorithm: Interactive computation and visualization of level sets. IEEE Trans. Vis.
Comput. Graph., 10(4):422–433, 2004.

[69] D. LeGall and A. Tabatabai. Sub-band coding of digital images using symmetric short
kernel filters and arithmetic coding techniques. In IEEE Int. Conf. Acoustics, Speech and
Signal Processing, volume 2, pages 761–764, 1988.

[70] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla: A Unified Graph-
ics and Computing Architecture. IEEE Micro, 28(2):39–55, 2008.

[71] L. Lippert and M. H. Gross. Fast wavelet based volume rendering by accumulation of
transparent texture maps. Computer Graphics Forum, 14(3):431–443, 1995.

[72] F. Liu, M.-C. Huang, X.-H. Liu, and E.-H. Wu. Cuda renderer: a programmable graphics
pipeline. In SIGGRAPH ASIA ’09: ACM SIGGRAPH ASIA 2009 Sketches, pages 1–1,
New York, NY, USA, 2009. ACM.

[73] G. R. Liu and M. B. Liu. Smoothed Particle Hydrodynamics: A Meshfree Particle Method.
World Scientific, 2003.

[74] X.-D. Liu, S. Osher, and T. Chan. Weighted essentially non-oscillatory schemes. J. Com-
put. Phys., 115(1):200–212, 1994.

[75] N. Loménie, L. Gallo, N. Cambou, and G. Stamon. Morphological operations on delaunay
triangulations. In Int. Conf. Pattern Recognition (ICPR’00), Sept. 3-8, Barcelona, Spain,
pages 3556–9, 2000.

[76] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface construc-
tion algorithm. SIGGRAPH Comput. Graph., 21(4):163–169, 1987.

[77] F. Losasso, F. Gibou, and R. Fedkiw. Simulating water and smoke with an octree data
structure. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages 457–462, New York,
NY, USA, 2004. ACM.

BIBLIOGRAPHY 143

[78] L. Luo, J. Li, S. Li, Z. Zhuang, and Y.-Q. Zhang. Motion compensated lifting wavelet and
its application in video coding. In Proc. IEEE International Conference on Multimedia
and Expo (ICME), pages 365–368, 2001.

[79] L. Luo, L. Luo, J. Li, S. Li, and Z. Zhuang. A motion compensated lifting wavelet codec
for 3D video coding. J. Comput. Sci. Technol., 18(2):214–222, 2003.

[80] C. Lürig and T. Ertl. Hierarchical volume analysis and visualization based on morpholog-
ical operators. In Proc. IEEE Visualization ’98, pages 335–341. IEEE Computer Society
Press, 1998.

[81] R. Malladi and J. A. Sethian. Level set methods for curvature flow, image enhancement,
and shape recovery in medical images. In In Proc. of Conf. on Visualization and Mathe-
matics, pages 329–345. Springer-Verlag, 1995.

[82] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, New York, 1998.

[83] X. Mei, P. Decaudin, B.-G. Hu, and X. Zhang. Real-time marker level set on GPU. In
International Conference on Cyberworlds, CW ’08, September, 2008, Hangzhou, Chine,
2008. IEEE.

[84] C. Min. Local level set method in high dimension and codimension. J. Comput. Phys.,
200(1):368–382, 2004.

[85] P. J. Moran. An interpreted language and system for the visualization of unstructured
meshes. In Proceedings, 6th International Meshing Roundtable, Sandia National Labo-
ratories, October, pages 233–248, 1997.

[86] L. Mroz, A. König, and E. Gröller. Maximum intensity projection at warp speed. Com-
puters & Graphics, 24:343–352, 2000.

[87] M. Müller, S. Schirm, and S. Duthaler. Screen space meshes. In SCA ’07: Proceedings
of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages
9–15, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics Association.

[88] K. Museth, D. E. Breen, R. T. Whitaker, and A. H. Barr. Level set surface editing opera-
tors. ACM Trans. Graph., 21(3):330–338, 2002.

[89] M. B. Nielsen and K. Museth. Dynamic Tubular Grid: An efficient data structure and
algorithms for high resolution level sets. J. Sci. Comput., 26(3):261–299, 2006.

[90] NVidia. CUDA Occupancy Calculator. http://developer.download.nvidia.com/compute/
cuda/CUDA Occupancy calculator.xls.

[91] NVidia. NVIDIA CUDA C Programming Best Practices Guide.

[92] NVIDIA Corporation. Compute Unified Device Architecture programming guide. Avail-
able at http://developer.nvidia.com/cuda.

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.nvidia.com/cuda

144 BIBLIOGRAPHY

[93] NVIDIA Corporation. NVIDIA’s Next Generation CUDA Compute Architecture:
Fermi. Available at http://www.nvidia.com/content/PDF/fermi white papers/NVIDIA
Fermi Compute Architecture Whitepaper.pdf.

[94] S. Osher, T. Chan, X. dong Liu, and X. dong Liu. Weighted essentially non-oscillatory
schemes. J. Comput. Phys, 115:200–212, 1994.

[95] S. Osher and R. Fedkiw. Level set methods: an overview and some recent results. J.
Comput. Phys., 169(2):463–502, 2001.

[96] S. Osher and R. Fedkiw. Level-Set Methods and Dynamic Implicit Surfaces. Springer-
Verlag, New York, 2002.

[97] S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: Algo-
rithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79:12–
49, 1988.

[98] S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: algo-
rithms based on Hamilton-Jacobi formulations. J. Comput. Phys., 79(1):12–49, 1988.

[99] D. Peng, B. Merriman, S. Osher, H. Zhao, and M. Kang. A PDE-based fast local level set
method. J. Comput. Phys., 155(2):410–438, 1999.

[100] K. Perlin. An image synthesizer. SIGGRAPH Comput. Graph., 19(3):287–296, 1985.

[101] B. Pesquet-Popescu and V. Bottreau. Three-dimensional lifting schemes for motion com-
pensated video compression. In ICASSP ’01: Proc. of the Acoustics, Speech, and Signal
Processing Conference, pages 1793–1796, 2001.

[102] G. Piella and H. Heijmans. Adaptive lifting schemes with perfect reconstruction. IEEE
Trans. Image Processing, 50(7):1620–1630, 2002.

[103] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. The state of the
art in flow visualisation: Feature extraction and tracking. Computer Graphics Forum,
22(4):773–790, 2003.

[104] J. B. T. M. Roerdink. Multiresolution maximum intensity volume rendering by morpho-
logical pyramids. In D. Ebert, J. M. Favre, and R. Peikert, editors, Data Visualization
2001. Proc. Joint Eurographics – IEEE TCVG Symposium on Visualization, May 28-30,
2001, Ascona, Switzerland, pages 45–54. Springer, Wien, New York, 2001.

[105] J. B. T. M. Roerdink. Comparison of morphological pyramids for multiresolution MIP
volume rendering. In D. Ebert, P. Brunet, and I. Navazo, editors, Data Visualization 2002.
Proc. Eurographics – IEEE TCVG Symposium, May 27-29, 2002, Barcelona, Spain, pages
61–70. ACM, New York, 2002.

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf

BIBLIOGRAPHY 145

[106] J. B. T. M. Roerdink. Multiresolution maximum intensity volume rendering by morpho-
logical adjunction pyramids. IEEE Trans. Image Processing, 12(6):653–660, June 2003.

[107] J. B. T. M. Roerdink. Morphological pyramids in multiresolution MIP rendering of large
volume data: Survey and new results. J. Math. Imag. Vision, 22(2/3):143–157, 2005.

[108] J. B. T. M. Roerdink and G. S. M. Blaauwgeers. Visualization of Minkowski operations by
computer graphics techniques. In J. Serra and P. Soille, editors, Mathematical Morphology
and its Applications to Image Processing, pages 289–296. Kluwer Acad. Publ., Dordrecht,
1994.

[109] I. D. Rosenberg and K. Birdwell. Real-time particle isosurface extraction. In SI3D ’08:
Proceedings of the 2008 symposium on Interactive 3D graphics and games, pages 35–43,
New York, NY, USA, 2008. ACM.

[110] C. Rössl, L. Kobbelt, and H.-P. Seidel. Extraction of feature lines on triangulated surfaces
using morphological operators. In AAAI 2000 Spring Symposium Series ”Smart Graph-
ics”, March 20-22, Stanford, USA, pages 71–75, 2000.

[111] M. Rumpf and R. Strzodka. Level set segmentation in graphics hardware. In Proceedings
of IEEE International Conference on Image Processing (ICIP’01), volume 3, pages 1103–
1106, 2001.

[112] M. Sainz and R. Pajarola. Point-based rendering techniques. Computers & Graphics,
28(6):869–879, 2004.

[113] N. Satish, M. Harris, and M. Garland. Designing efficient sorting algorithms for many-
core GPUs. In Proc. of the 2009 IEEE International Symposium on Parallel&Distributed
Processing, pages 1–10, Washington, DC, USA, 2009. IEEE Computer Society.

[114] J. Serra. Image Analysis and Mathematical Morphology. Academic Press, New York,
1982.

[115] J. Serra, editor. Image Analysis and Mathematical Morphology. II: Theoretical Advances.
Academic Press, New York, 1988.

[116] J. Sethian. Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Com-
puter Vision, and Materials Science. Cambridge University Press, June 1996.

[117] J. A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University
Press, 1999.

[118] G. Shen, G. P. Gao, S. Li, H. Y. Shum, and Y. Q. Zhang. Accelerate video decoding with
generic GPU. IEEE Trans. Circuits and Systems for Video Technology, 15(5):685–693,
May 2005.

146 BIBLIOGRAPHY

[119] D. Shepard. A two-dimensional interpolation function for irregularly-spaced data. In
Proc. of the 1968 23rd ACM national conference, pages 517–524, New York, NY, USA,
1968. ACM.

[120] M. Shih, Y.-F. Chiu, Y.-C. Chen, and C.-F. Chang. Real-time ray tracing with cuda. In
ICA3PP ’09: Proceedings of the 9th International Conference on Algorithms and Ar-
chitectures for Parallel Processing, pages 327–337, Berlin, Heidelberg, 2009. Springer-
Verlag.

[121] C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-
capturing schemes. J. Comput. Phys., 77(2):439–471, 1988.

[122] C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-
capturing schemes. J. Comput. Phys., 77(2):439–471, 1988.

[123] A. N. Skodras, C. A. Christopoulos, and T. Ebrahimi. JPEG2000: The upcoming still
image compression standard. Pattern Recognition Letters, 22(12):1337–1345, 2001.

[124] P. Smereka. Semi-implicit level set methods for curvature and surface diffusion motion.
J. Sci. Comput., 19(1-3):439–456, 2003.

[125] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI-The Complete
Reference, Volume 1: The MPI Core. MIT Press, Cambridge, MA, USA, 1998.

[126] D. Stora, P.-O. Agliati, M.-P. Cani, F. Neyret, and J.-D. Gascuel. Animating lava flows. In
Graphics Interface, pages 203–210, Jun 1999.

[127] J. Strain. Tree methods for moving interfaces. J. Comput. Phys., 151(2):616–648, 1999.

[128] M. Strengert, M. Magallon, D. Weiskopf, S. Guthe, and T. Ertl. Hierarchical visualization
and compression of large volume datasets using GPU clusters. Parallel Graphics and
Visualization, 2004.

[129] J. Sugerman, K. Fatahalian, S. Boulos, K. Akeley, and P. Hanrahan. Gramps: A program-
ming model for graphics pipelines. ACM Transactions on Graphics, 28(1):4:1–4:11, Jan.
2009.

[130] H. Sutter. The free lunch is over. Dr. Dobb’s Journal, 30(3), March 2005.

[131] W. Sweldens. The lifting scheme: A construction of second generation wavelets. SIAM J.
Math. Anal., 29(2):511–546, 1997.

[132] W. Sweldens. The Lifting Scheme: A Construction of Second Generation Wavelets. SIAM
Journal on Mathematical Analysis, 29(2):511–546, 1998.

[133] W. Sweldens and P. Schröder. Building your own wavelets at home. In Wavelets in
Computer Graphics, pages 15–87. ACM SIGGRAPH Course notes, 1996.

BIBLIOGRAPHY 147

[134] C. Tenllado, R. Lario, M. Prieto, and F. Tirado. The 2D discrete wavelet transform on
programmable graphics hardware. In Proc. of the 4th IASTED International Conference
on Visualization, Imaging, and Image Processing, 2004.

[135] C. Tenllado, J. Setoain, M. Prieto, L. Piñuel, and F. Tirado. Parallel implementation of
the 2D discrete wavelet transform on graphics processing units: Filter bank versus lifting.
IEEE Transactions on Parallel and Distributed Systems, 19(3):299–310, 2008.

[136] J. Y. Tham, S. Ranganath, and A. A. Kassim. Highly scalable wavelet-based video codec
for very low bit-rate environment. IEEE Journal on selected areas in communications,
16:12–27, jan 1998.

[137] The Khronos Group. The OpenCL specification. http://www.khronos.org/registry/cl/.

[138] R. Tsai and S. Osher. Level set methods and their applications in image science. Comm.
Math. Sci., 1(4):623–656, 2003.

[139] M. Tun, K. K. Loo, and J. Cosmas. Error-Resilient Performance of Dirac Video Codec
Over Packet-Erasure Channel. IEEE Transactions on Broadcasting, 53(3):649–659, sep
2007.

[140] J. Z. Turlington and W. E. Higgins. New techniques for efficient sliding thin-slab volume
visualization. IEEE Trans. Med. Imaging, 20(8):823–835, Aug. 2001.

[141] S.-Z. Ueng, M. Lathara, S. S. Baghsorkhi, and W. mei W. Hwu. Cuda-lite: Reducing gpu
programming complexity. In J. N. Amaral, editor, LCPC, volume 5335 of Lecture Notes
in Computer Science, pages 1–15. Springer, 2008.

[142] W. J. van der Laan, A. C. Jalba, and J. B. T. M. Roerdink. Accelerating wavelet-based
video coding on graphics hardware using CUDA. In Proc. 6th Intern. Symp. on Image and
Signal Processing and Analysis (ISPA 2009), September 16-18, Salzburg, Austria, pages
614–619, 2009.

[143] W. J. van der Laan, A. C. Jalba, and J. B. T. M. Roerdink. Accelerating wavelet lift-
ing on graphics hardware using CUDA. Technical report, Institute for Mathematics and
Computing Science, University of Groningen, 2009. Submitted for publication.

[144] W. J. van der Laan, A. C. Jalba, and J. B. T. M. Roerdink. A memory and computationally-
efficient sparse level-set algorithm. Technical report, Institute for Mathematics and Com-
puting Science, University of Groningen, 2009. Submitted for publication.

[145] V. Volkov and J. Demmel. LU, QR and Cholesky factorizations using vector capabilities
of GPUs. Technical report, University of California at Berkeley, 2008.

[146] M. A. Westenberg and J. B. Roerdink. Mixed-method identifications. In J. M. H. Du Buf
and M. M. Bayer, editors, Automatic Diatom Identification, volume 51 of Series in Ma-
chine Perception and Artificial Intelligence, chapter 12, pages 245–257. World Scientific
Publishing Co., Singapore, 2002.

http://www.khronos.org/registry/cl/

148 BIBLIOGRAPHY

[147] M. A. Westenberg and J. B. T. M. Roerdink. Frequency domain volume rendering by the
wavelet X-ray transform. IEEE Trans. Image Processing, 9(7):1249–1261, 2000.

[148] M. A. Westenberg and J. B. T. M. Roerdink. X-ray volume rendering by hierarchi-
cal wavelet splatting. In Proc. 15th Intern. Conf. on Pattern Recognition (ICPR’2000),
Barcelona, Sep. 3-7, pages 163–166, 2000.

[149] M. A. Westenberg and J. B. T. M. Roerdink. X-ray volume rendering through two-stage
splatting. Machine Graphics & Vision, 9(1/2):307–314, 2000.

[150] M. A. Westenberg and J. B. T. M. Roerdink. An extension of Fourier-wavelet volume
rendering by view interpolation. J. Math. Imag. Vision, 14(2):103–115, 2001.

[151] M. A. Westenberg, M. H. F. Wilkinson, and J. B. T. M. Roerdink. Nonlinear volumetric
filtering and interactive visualization using the max-tree representation. Technical report,
Institute for Mathematics and Computing Science, University of Groningen, 2004.

[152] R. Westermann. A multiresolution framework for volume rendering. In ACM workshop
on Volume Visualization, pages 51–58, 1994.

[153] R. T. Whitaker. A level-set approach to 3D reconstruction from range data. Int. J. Comput.
Vision, 29(3):203–231, 1998.

[154] T. Wiegand, G. J. Sullivan, G. Bjntegaard, and A. Luthra. Overview of the H.264/AVC
video coding standard. Circuits and Systems for Video Technology, IEEE Transactions on,
13(7):560–576, 2003.

[155] M. H. F. Wilkinson, A. C. Jalba, E. R. Urbach, and J. B. T. M. Roerdink. Identification by
mathematical morphology. In J. M. H. Du Buf and M. M. Bayer, editors, Automatic Di-
atom Identification, volume 51 of Series in Machine Perception and Artificial Intelligence,
chapter 11, pages 221–244. World Scientific Publishing Co., Singapore, 2002.

[156] B. W. Williams. Fluid surface reconstruction from particles. Master’s thesis, The Univer-
sity Of British Columbia, February 2008.

[157] T. T. Wong, C. S. Leung, P. A. Heng, and J. Wang. Discrete Wavelet Transform on
Consumer-Level Graphics Hardware. IEEE Transactions on Multimedia, 9(3):668–673,
apr 2007.

[158] N. D. Zervas, G. P. Anagnostopoulos, V. Spiliotopoulos, and Y. Andreopoulos. Evaluation
of design alternatives for the 2D discrete wavelet transform. IEEE Trans. Circ. and Syst.
for Video Tech., 11:1246–1262, 2001.

[159] Y. Zhang and R. Pajarola. Deferred blending: Image composition for single-pass point
rendering. Computers & Graphics, 31(2):175–189, 2007.

BIBLIOGRAPHY 149

[160] Y. Zhang, B. Solenthaler, and R. Pajarola. Adaptive sampling and rendering of fluids on
the gpu. In In Proc. of Symposium on Point-Based Graphics, pages 137–146, 2008.

[161] H. Zhao, S. Osher, and R. Fedkiw. Fast surface reconstruction using the level set method.
In Proceedings of the IEEE Workshop on Variational and Level Set Methods in Computer
Vision, pages 194–202, 2001.

[162] D. Zhongminga, T. Kawamuraa, N. Sakamotob, and K. Koyamadab. Particle-based mul-
tiple irregular volume rendering on cuda. Simulation Modelling Practice and Theory,
18(8):1172–1183, sep 2010.

[163] K. Zhou, M. Gong, X. Huang, and B. Guo. Highly parallel surface reconstruction. Tech-
nical report, Microsoft Research, 2008.

[164] K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time kd-tree construction on graphics
hardware. ACM Trans. Graph., 27(5):1–11, 2008.

150 BIBLIOGRAPHY

Publications

Papers in scientific journals
Wladimir J. van der Laan, Andrei C. Jalba, and Jos B. T. M. Roerdink. Accelerating Wavelet
Lifting on Graphics Hardware using CUDA. IEEE Transactions on Parallel and Distributed
Systems, 22, 2011, pp. 132-146, http://doi.ieeecomputersociety.org/10.1109/TPDS.2010.143.

Wladimir J. van der Laan, Andrei C. Jalba, and Jos B. T. M. Roerdink. A Memory and Compu-
tation Efficient Sparse Level-Set Method. Journal of Scientific Computing, 2010, http://dx.doi.
org/10.1007/s10915-010-9399-5, p. 1-22.

Andrei C. Jalba, Wladimir J. van der Laan, and Jos B. T. M. Roerdink. Real-Time Sparse Level-
Sets on Graphics Hardware. Submitted.

Full papers in conference proceedings
Wladimir J. van der Laan, Andrei C. Jalba, and Jos B. T. M. Roerdink. Multiresolution MIP
Rendering of Large Volumetric Data Accelerated on Graphics Hardware. In Proc. Eurograph-
ics/IEEE VGTC Symposium on Visualization (EuroVis), pages 243-250, 2007.

Wladimir J. van der Laan, Simon Green, and Miguel Sainz. Screen Space Fluid Rendering with
Curvature Flow. In Proc. I3D 2009: The 2009 ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, pages 91-98, 2009.

Wladimir J. van der Laan, Andrei C. Jalba, and Jos B.T.M. Roerdink (2009) Accelerating Wavelet-
Based Video Coding on Graphics Hardware using CUDA. In Proc. 6th International Symposium
on Image and Signal Processing and Analysis (ISPA 2009, September 16–18, Salzburg, Austria).
Pages 614–619, 2009.

Other publications

W.J. van der Laan and J.B.T.M. Roerdink, MIP rendering using adjunction pyramids accelerated
on graphics hardware, SIREN: Scientific ICT Research Event Netherlands, 12 October 2006,
Utrecht (poster).

http://doi.ieeecomputersociety.org/10.1109/TPDS.2010.143
http://dx.doi.org/10.1007/s10915-010-9399-5
http://dx.doi.org/10.1007/s10915-010-9399-5

152

W.J. van der Laan, A.C. Jalba and J.B.T.M. Roerdink, Wavelet Lifting on Graphics Hardware for
Faster Video Decoding, SIREN: Scientific ICT Research Event Netherlands, 30 October 2007,
TU Delft (poster).

W. J. van der Laan, A. C. Jalba and J. B. T. M. Roerdink. Multiresolution MIP rendering of large
volumetric data accelerated on graphics hardware. In Proc. 13th Ann. Conf. Advanced School
for Computing and Imaging (ASCI’07), pp. 59-66.

Samenvatting

Visualisatie speelt een steeds grotere rol bij de interpretatie van gegevens uit medische scans,
simulaties van natuurkundige processen, driedimensionale microscopie, astronomische waarne-
mingssystemen, enz. Doordat niet van tevoren duidelijk is welke elementen in de gegevens
van belang zijn, dient de gebruiker invloed te kunnen uitoefenen op het verloop van het visual-
isatieproces, via het veranderen van aanzichten of parameters; we spreken dan van interactieve
visualisatie. Hierdoor wordt de tijd die nodig is om gegevens te interpreteren of interessante
verbanden op het spoor te komen sterk verkleind. De wens tot interactieve visualisatie stelt
echter hoge eisen aan de visualisatiesystemen in termen van snelheid, economisch geheugenge-
bruik, en datamanagement. In dit proefschrift hebben we dit probleem op verschillende manieren
aangepakt.

In hoofdstuk 2 hebben we een aantal algoritmen onderzocht die gebaseerd zijn op morfol-
ogische piramiden voor zgn. multiresolutie MIP (“MaximumIntensiteitsProjectie”). MIP is een
methode voor volume-visualisatie waarbij de hoogste intensiteit langs een willekeurige lijn door
het volume in het beeldvlak wordt weergegeven. Deze algoritmen zijn zo geı̈mplementeerd dat ze
rechtstreeks op een grafische kaart werken. We hebben geconstateerd dat onze geoptimaliseerde
“streaming MIP” methode zowel de software-implementatie als bestaande grafische hardware-
gebaseerde methoden voorbij streeft.

In hoofdstuk 3 hebben we een nieuwe, snelle implementatie op grafische kaarten gepre-
senteerd van de “wavelet lifting” transformatie. De “wavelet lifting” methode construeert in-
gewikkelde wavelet-transformaties vanuit eenvoudige basistransformaties: dit proces noemen we
“lifting”. Hierbij hebben we gebruik gemaakt van CUDA, een recente programmeer-architectuur
voor grafische hardware. Deze methode is te gebruiken voor ruimten van willekeurige dimen-
sie. We hebben onze methode vergeleken met een geoptimaliseerde software-implementatie van
“wavelet lifting” en met een CUDA-implementatie die gebaseerd is op convolutie. De meth-
ode is schaalbaar en we hebben laten zien dat onze methode de snelste is van alle methoden die
we hebben vergeleken. Ons algoritme kan worden toegepast op bijvoorbeeld beeld- of video-
compressie.

In hoofdstuk 4 hebben we laten zien hoe de “Dirac Video Codec”, een compacte manier
om videomateriaal op te slaan, kan worden versneld met behulp van de “wavelet lifting” im-
plementatie op grafische hardware die we in het vorige hoofdstuk hebben behandeld. Ook
hebben we twee andere fasen van het complete videocoderingsproces op grafische hardware
geı̈implementeerd, namelijk de bewegingscompensatie en de compositie van individuele beelden.
Bij onze experimenten konden we een videosignaal, bestaande uit beelden met 1920 × 1080
beeldpunten, afspelen met zo’n 50 beelden per seconde op een gewone videokaart.

In hoofdstuk 5 hebben we een nieuwe methode gepresenteerd om het oppervlak van vloeistof-

154

fen zoals water op een realistische manier af te beelden. Met deze methode kan het resultaat van
een vloeistofsimulatie rechtstreeks en snel worden afgebeeld door de vloeistof als deeltjessys-
teem voor te stellen. Op deze manier kunnen we een vloeiende en interactieve animatie bew-
erkstelligen. Ook hebben we nieuwe ideeën geı̈ntroduceerd voor schaduweffecten die gebaseerd
zijn op de dikte van de vloeistoflaag. Tevens hebben we kleine oppervlakte-details aangebracht
op de afgebeelde vloeistoffen.

In hoofdstuk 6 hebben we een efficiënte datastructuur voorgesteld voor zgn. niveauverza-
melingen (“level-sets”). Niveauverzamelingen worden gebruikt om vervormbare oppervlakken
te beschrijven. De vervorming van een oppervlak in de tijd kan beschreven worden met behulp
van een partiële differentiaalvergelijking. We hebben onze methode “Sorted Tile Grid“ genoemd.
Het volume wordt namelijk opgedeeld in blokken (“tiles”) die in gesorteerde volgorde worden
gehouden om veranderingen in het volume zo efficiënt mogelijk te kunnen doorrekenen. We
hebben onze methode vergeleken met de thans meest gebruikte methode, het “DT-Grid”. Hierbij
hebben we geconstateerd dat onze methode, met gebruik van dezelfde numerieke simulatie, ruim
8 keer sneller is.

In hoofdstuk 7 hebben we de “Sorted Tile Grid” methode uit het vorige hoofdstuk geschikt
gemaakt voor implementatie op grafische hardware en andere parallelle architecturen. We hebben
laten zien dat onze implementatie op grafische hardware ongeveer 20 keer sneller is dan de
geoptimaliseerde software-versie van het vorige hoofdstuk. Veel toepassingen van de “level-set”
methode kunnen profiteren van onze vinding. Om dit te demonstreren hebben we twee toepassin-
gen laten zien: reconstructie van oppervlakken vanuit een wolk van punten, en het interactief
bewerken van oppervlakken.

Dankwoord

Bijzondere dank gaat uit naar mijn promotor, Prof. Dr. Jos Roerdink, voor het aanreiken van het
onderwerp, het verstrekken van onderliggende theoretische informatie en het kritisch evalueren
van de tekst. En ook voor zijn steun tijdens het tot stand komen van dit werk. Op momenten
dat het wat minder hard ging wist hij veel vertrouwen erin te houden, dit heeft mij geholpen dit
proefschrift te maken tot wat het is.

Daarnaast ook een gemeend woord van dank aan mijn copromotor, Dr. Andrei Jalba, voor het
geven van richting aan het onderzoek, zijn hulp met de tekst, software-implementaties, en zijn
gedetailleerde technische commentaar. Ook is hij degene die oorspronkelijk mijn belangstelling
gewekt heeft om een promotie-onderzoek te gaan doen.

Speciale dank gaat uit naar Miguel Sainz, Simon Green en Nikki Gravestock van NVIDIA
voor het aanbieden van een stage in Londen, waar ik veel over GPU hardware heb geleerd. Ook
was het een geweldige ervaring om met de groep van NVIDIA naar SIGGRAPH 2008 te gaan.
Verder wil ik NVIDIA bedanken voor het ter beschikking stellen van een grafische kaart voor
berekeningen en experimenten.

Mijn dank gaat verder uit naar Thomas Ertl en de medewerkers van het Visualisatie Instituut
van de Universiteit van Stuttgart, waar ik met plezier een maand doorgebracht heb en waar ik
mijn eerste stappen richting CUDA heb gemaakt.

Ook gaat mijn dank uit naar de Nederlandse Organisatie voor Wetenschappelijk Onderzoek
(NWO), specifiek het “VIEW: Visual Interactive Effective Worlds” programma, voor het spon-
soren van mijn onderzoek.

Tenslotte wil ik mijn vrienden, mijn vriendin, mijn zus en mijn ouders bedanken voor hun
niet aflatende steun gedurende de afgelopen jaren.

156

	Introduction
	Coping with the data stream in interactive visualization
	Interactive morphological and wavelet-based volume processing and visualization
	Level sets
	General purpose computation on graphics hardware
	Thesis contributions and organization

	Multiresolution MIP rendering on graphics hardware
	Introduction
	Previous and related work
	Overview of the multiresolution MIP algorithm
	Morphological operators
	Pyramids
	Multiresolution MIP algorithm
	Streaming MIP

	Implementation on graphics hardware
	Per-voxel projection
	Representing the detail coefficients
	Projecting the detail coefficients
	Load balancing
	Streaming MIP
	Optimized streaming MIP
	Post-processing

	Results
	Discussion
	Conclusion

	Accelerating Wavelet Lifting on Graphics Hardware using CUDA
	Introduction
	Previous and related work
	Wavelet lifting
	Wavelet transform by subband filtering
	Wavelet transform by lifting

	Wavelet lifting on GPUs using CUDA
	CUDA overview
	Performance considerations for parallel CUDA programs (kernels)
	Parallel wavelet lifting
	Separable wavelets
	Horizontal pass
	Vertical pass
	3-D and higher dimensions

	Results
	Wavelet filters used for benchmarking
	Experimental results and comparison to other methods
	Performance Analysis

	Conclusion

	Accelerating Wavelet-Based Video Coding on Graphics Hardware
	Introduction
	CUDA-based implementation of the DWT
	CUDA overview
	Wavelet lifting
	Wavelet lifting in CUDA

	Accelerating the Dirac Video Codec
	Motion compensation
	Frame arithmetic

	Performance results
	Conclusion

	Screen Space Fluid Rendering with Curvature Flow
	Introduction
	Related work
	Method
	Surface depth
	Smoothing methods
	Thickness
	Noise
	Rendering

	Results and discussion
	Conclusions and future work

	A Memory and Computation Efficient Sparse Level-Set Method
	Introduction
	Previous and related work
	Overview of the level set method
	Sparse-grid level set representations
	Reshaping the level set function

	The proposed method
	The data structure
	Initialization
	Append operation
	Sequential access with stencil
	Random access
	Tile management
	Updating the level-set

	Results
	Mean curvature flow
	Volume-conserving mean curvature flow
	Memory usage
	Periodic velocity field advection
	Tile size considerations
	Tile management overhead
	Discussion of our method
	Parallelization over multiple CPUs

	Conclusions and future work

	Real-Time Sparse Level-Sets on Graphics Hardware
	Introduction
	Previous and related work
	Efficient level set methods on the CPU
	Level set GPU methods
	Sparse CPU methods
	Surface reconstruction

	Proposed GPU level set method
	Generic level set equation
	CPU STL method
	GPU sparse level sets
	Rendering the interface using CUDA and OpenGL

	Proposed surface reconstruction method
	Efficiency and multi-resolution

	Comparison with previous approaches
	Results
	Efficiency: Comparison to other methods
	Surface reconstruction
	Interactive level-set surface editing
	Limitations

	Conclusions and future work

	Concluding remarks
	Summary and Conclusions
	Future outlook
	GPUs
	Computer Graphics APIs
	CUDA
	GPGPU for embedded systems

	Bibliography
	Publications
	Samenvatting
	Dankwoord

